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I. INTRODUCTION

Near infrared (NIR) diffuse optical imaging provides quantitative functional information from breast tissue that

can not be obtained by conventional radiological methods. NIR techniques can provide in vivo measurements

of oxygenation and vascularization state, the uptake and release of molecular contrast agents and chromophore

concentrations with high sensitivity. There is considerable evidence that tumor growth is dependent on angio-

genesis [1]- [3], and that tumor aggressiveness can be assessed from its increased number of new vessels and

reduced oxygenation state relative to normal breast tissue and benign breast lesions [4]- [6]. NIR diffuse optical

tomographic (DOT) methods has the potential to characterize angiogenesis related vessel density as it measures

the total hemoglobin concentration and provide the ability to differentiate between benign and malignant lesions

based on oxygen saturation. Furthermore, NIR methods are non-ionizing, relatively inexpensive and can be made

portable.

The diagnosis and management of cancer involves several stages where magnetic resonance (MR) plays a

valuable and growing role. MRI of the breast is now a routine part of the clinical care in many centers [9]-

[11]. Magnetic Resonance imaging (MRI) is indicated in patients with inconclusive clinical and/or mammographic

examinations. Patients that may bene t include women with radiographically dense breasts, and high risk potential

population [12]- [13]. MRI possesses less than 10% contrast for soft tissue pathology [14]. Gadolinium (Gd)

enhanced MRI offers much better contrast and is speci c for tumor vessel imaging. However, the signal in the

Gd-MRI arises from the larger vessels as the contrast agent is  ushed out of the vascular bed of the tumor [15].

In comparison, NIR measurements of absorption have extremely high contrast. It was reported that 5% change

in vascular density as measured histologically in ductal carcinomas leads to approximately 300% contrast in NIR

absorption coef cients [7]. Furthermore, there are studies suggesting that the kinetics of contrast enhanced optical
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spectroscopy provides information about the cellular spaces [8]. On the other hand, NIR DOT suffers from poor

spatial resolution and as such, it is unlikely that NIR imaging will be a stand-alone screening method in the general

population. Therefore, we believe that the concurrent MR and NIR imaging brings together the most advantageous

aspects of the two imaging modalities (structural and functional). In the future, we envision that this multimodality

imaging approach will lead to high resolution hemoglobin tomography and comprehensive quantitative functional

tissue characterization to differentiate malignant and benign tumors.

In this project, the clinical studies are performed using the novel MR-NIR hybrid time-resolved spectroscopy

(TRS) imager and fast Indocynine Green (ICG) enhanced spectroscopic imager developed by Dr. Chance, a Co-PI

of this proposal, at the University of Pennsylvania (UPenn), Biophysics Department, Diffuse Optical Imaging and

Spectroscopy Laboratory.

The central hypothesis of this project is that the concurrent MR-NIR diffuse optical tomographic methods coupled

with fast contrast enhanced NIR spectroscopic methods provide fundamentally new quantitative functional and

structural information for breast cancer tumor characterization and detection. This new information can be obtained

by novel modeling, analysis and data fusion methods from the tomographic, temporal and cellular-based contrast

measurements, which exploit fast imaging techniques together with TRS tomographic methods. In this project,

we investigate new methods for multi-modality high spatial resolution hemoglobin tomography, pharmacokinetic

modeling of molecular contrast agents based on fast NIR spectroscopy and analysis of structural and functional

information provided by MR and NIR imaging methods for breast cancer detection based on receiver operating

characteristics methodology. Speci c aims of the project are as follows:

• Aim 1: Utilize a priori anatomical information provided by MRI, to reconstruct 3D high resolution hemoglobin,

water and lipid concentration, and oxygen saturation images directly from 6 wavelength time resolved optical

measurements. Evaluate improvements in image reconstruction between that of stand-alone NIR and concurrent

MR-NIR measurements using water and lipid images obtained from MRI.

• Aim 2: Develop a compartmentalized pharmacokinetic modeling of ICG, optical contrast agent, and extract

quantitative parameters that can characterize tumor metabolism and angiogenesis. Compare ICG kinetics with

the Gadolinium, MR contrast agent, kinetics and biopsy  ndings.

• Aim 3: Evaluate accuracy of breast cancer diagnosis based on the quantitative functional information extracted

from stand-alone NIR system. This information includes hemoglobin, water and lipid concentration, optical

scatter power and oxygen saturation images, and ICG pharmacokinetic parameters. Evaluate the added value
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of ICG kinetic parameters in breast cancer diagnosis.

• Aim 4: Combine NIR based breast cancer diagnosis features with the systematic MR breast architecture and

kinetics interpretation model developed by Dr. Nunes, M.D, Co-PI of this proposal, to evaluate the sensitivity

and speci city of concurrent MR-NIR imaging method. Compare results with that of stand-alone MR and NIR

results.

In the following sections, we will provide detailed description of our current research in line with the statement

of work (SOW) and the aims outlined above. For the period of June 1st, 2006 to May 31st 2007, SOW includes

only the  rst two aims of the project.

II. BODY

In the year 3 of the project, SOW includes tasks related to Aim 2 and 3 of the project. Below, we describe the

works that has been performed towards the Aim 2, Task 3 and Aim 3 Tasks 3 and 4. We also improved upon the

Task 1 of Aim 1.

A. AIM 2 - Tasks 3 / AIM 3- Task 1

1) Reconstruction of Bulk ICG Concentration Images: In our data collection process, a sequence of boundary

measurements are collected over a period of time. Each set of measurements are used to form a frame of the ICG

concentration images. The resulting sequence of ICG concentration images are then used to form pharmacokinetic-

rate images. To reconstruct each frame of the ICG concentration images, we follow a static reconstruction approach

and use differential diffuse optical tomography (DDOT) technique [18], [23].

In DDOT, two sets of excitation measurements are collected corresponding to before and after the ICG injection,

and the ICG concentration is determined by the perturbation method [18], [23]. The photon propagation before and

after the injection is modeled by the following diffusion equation:

∇ · [Dx∇Φ±
x (r, ω) − [μ±

ax(r) + jω/c]Φ±
x (r, ω) = 0, r ∈ Ω ⊆ R

3 (1)

with Robin-type boundary conditions:

2Dx
∂Φ±

x

∂ν
+ ρΦ±

x = −S(r, ω), r ∈ ∂Ω. (2)

where x stands for the excitation, c is the speed of light inside the medium Ω; ω denotes the modulation frequency

of the source, μ−
ax(r) and μ+

ax(r) are the absorption coef cients before and after the ICG injection, Dx is the
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diffusion coef cient which is assumed to be constant, Φ±
x (r, ω) optical  eld at location r before and after the ICG

injection. Here, ν denotes the outward normal to the boundary ∂Ω of Ω, ρ is a constant representing the refractive

index mismatch between the two regions separated by ∂Ω, and S(r, ω) is the excitation source on the boundary.

The absorption coef cient after the injection μ+
ax are modeled as a sum of the absorption coef cient of the

medium before the ICG injection μ−
ax and the perturbation caused by the ICG Δμax(r):

Δμax(r) = μ+
ax(r) − μ−

ax(r), r ∈ Ω ⊆ R
3. (3)

In the forward model, the analytical solutions of the heterogonous diffusion equation given in (1) is derived using

 rst order Rytov approximation [18]. The sample volume is divided into a set of voxels and the measurements

are related to the relative absorption coef cients of each voxel by a system of linear equations. The shape of the

breast was approximated as a cylinder and the Kirchhoff approximation [24], [25] for diffuse waves was used to

model the interaction of light with boundaries. In order to account for the biological noise, the forward model was

implemented with coupling coef cient technique [26].

Here, the Rytov-type measurements, which are de ned by the natural logarithm of the ratio of the post-ICG

measurements to the pre-ICG measurements were used [23]. Let Ψx(rd, ω; rs) denote the Rytov-type measurements

at location rd due to source at rs. The linearized relationship between the differential absorption coef cient and

measurements is given by [21],

Ψx(rd, ω; rs) = − 1
Φ−

x (rd, ω; rs)

∫
Ω

G−
x (r − rd, ω; rs)Ix(r)Φ−

x (r, ω; rs)d3r (4)

where Φ−
x (r, ω; rs) is the photon density obtained at the excitation wavelength before ICG injection, Ix(r) =

cΔμax(r)/Dx, and G−
x (r−rd, ω; rs) is the Green’s function of (1) for a source at rs before the injection describing

the propagation of light from the heterogeneity r to the detector at rd.

We address the inverse problem of recovering Δμax from Rytov-measurements Ψx based on the forward model

(4) using the singular value decomposition of the Moore-Penrose generalized system. We use a zeroth-order

Tikhonov regularization to stabilize the inversion procedure. We apply the L-curve method to an experimental

model reconstruction and derive the best regularization parameter using a curvature function as described in [27].

A detailed discussion of the forward and inverse models used for the reconstruction of differential absorption

coef cients (Δμax) can be found in [18].

To construct a set of ICG concentration images, we use the linear relationship between the differential absorption
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coef cients and ICG concentrations [20]:

Δμa(r) = ln 10 ελ m(r) = 2.303 ελ m(r) (5)

where ελ is the extinction coef cient of ICG at the wavelength 805nm, m(r) is the bulk ICG concentration in the

tissue, and Δμa(r) is as de ned in (3).

2) Modeling and Estimation of ICG Pharmacokinetics: Two-compartment Model of ICG Pharmacokinetics:

Using the method outlined in Section 2, we reconstruct a sequence of ICG concentration images. As an example,

Figure 3 shows a set of images reconstructed from in vivo breast data.

Our objective is to model the pharmacokinetics of ICG at each voxel of ICG concentration images using

compartmental modeling. To do so, we  rst extracted the time varying ICG concentration curves for each voxel

from the sequence of ICG concentration images. An example of such a curve is shown in Figure 6. We next  t a

two-compartment model to each ICG concentration curve [19], [22]. Figure 23 shows the two-compartment model

for ICG kinetics. Here, plasma and extracellular-extravascular space (EES) constitute the two compartments. Cp

and Ce represent the ICG concentrations in plasma and the EES, respectively. The rates kin and kout govern the

leakage into and the drainage out of the EES. The parameter kelm describes the ICG elimination from the body

through kidneys and livers.

Using the two-compartment model introduced in [19], ICG transition between plasma and the EES can be

modeled as follows: ⎡
⎢⎣ Ċe(t)

Ċp(t)

⎤
⎥⎦ =

⎡
⎢⎣ −kout kin

kout −(kin + kelm)

⎤
⎥⎦

⎡
⎢⎣ Ce(t)

Cp(t)

⎤
⎥⎦ + ω(t), (6)

where Cp(t) and Ce(t) represent the ICG concentrations in plasma and the EES at time t ∈ [T0, T1], respectively.

The rates kin, kout, and kelm have a unit of sec−1. They are de ned as the permeability surface area products

given by PSρ, where P is the capillary permeability constant, S is the capillary surface area, and ρ is the tissue

density. Here, ω(t) is uncorrelated zero-mean Gaussian process with covariance matrix Q representing the model

mismatch.

The actual total ICG concentration in the tissue is a linear combination of plasma and the EES ICG concentrations

modeled as:

m(t) =
[

ve vp

] ⎡
⎢⎣ Ce(t)

Cp(t)

⎤
⎥⎦ + η(t) (7)
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where m(t), Ce(t), and Cp(t) are de ned in (5) and (6); vp and ve are plasma and the EES volume fractions,

respectively; and η(t) is uncorrelated zero-mean Gaussian process with covariance matrix R, representing the

measurement noise.

Estimation of ICG Pharmacokinetics using Extended Kalman Filtering: In matrix-vector notation, (6) and (7)

can be expressed as:

Ċ(t) = K(α)C(t) + ω(t), (8)

m(t) = V(α)C(t) + η(t),

where C(t) denotes the concentration vector with elements Ce(t), and Cp(t); K(α) is the system matrix, V(α) is

the measurement matrix as de ned in equation (7), and α is the parameter vector given by

α = [kout kin kelm ve vp]T . (9)

The ICG measurements in (8) are collected at discrete time instances, t = kT , k = 0, 1, ..., where T is the

sampling period. Therefore, the continuous model described in (8) is discretized. We can express the discrete

compartmental model as follows:

Cd(k + 1) = Kd(θ)Cd(k) + ωd(k), (10)

m(k) = Vd(θ)Cd(k) + ηd(k),

where Kd(θ) = eK(α) is the discrete time system matrix; Vd(θ) = V(α) is the discrete measurement matrix; ωd(k)

and ηd(k) are zero-mean Gaussian white noise processes with covariances matrix Qd and variance Rd, respectively.

The vector θ is composed of parameters τij which are functions the pharmacokinetic-rates and volume fractions:

θ =
[

τ11 τ12 τ21 τ22 ve vp

]T

. (11)

We  rst estimate τij’s, i, j = 1, 2 and then compute the pharmacokinetic-rates kin, kout and kelm [19], [28]. The

explicit form of the discrete state-space model is given as follows:⎡
⎢⎣ Ce(k + 1)

Cp(k + 1)

⎤
⎥⎦ =

⎡
⎢⎣ τ11 τ12

τ21 τ22

⎤
⎥⎦

⎡
⎢⎣ Ce(k)

Cp(k)

⎤
⎥⎦ + ωd(k) (12)

m(k) =
[

ve vp

]⎡
⎢⎣ Ce(k)

Cp(k)

⎤
⎥⎦ + ηd(k).

We estimate the parameter vector θ and concentration vector Cd by using the EKF framework. The EKF is

a recursive modeling and estimation method with numerous advantages in ICG pharmacokinetic modeling [19].
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These include effective modeling of multiple compartments, and multiple measurement systems in the presence

of measurement noise and uncertainties in the compartmental model dynamics, simultaneous estimation of model

parameters and ICG concentrations in each compartment, statistical validation of estimated concentrations and

error bounds on the model parameter estimates, and incorporation of available a priori information about the initial

conditions of the permeability rates into the estimation procedure.

When both states (ICG concentrations) and model parameters (pharmacokinetic-rates and volume fractions) are

unknown, a linear state-space model can be regarded as a non-linear model; the linear system parameters and states

combine to form the new states of the non-linear model. This system is then linearized and the new unknown states

are found using the EKF estimator [19], [29]–[31]. In EKF framework, θ can be treated as a random process with

the following model:

θ(k + 1) = θ(k) + ςd(k), (13)

where ςd(k) is a zero-mean Gaussian process with covariance matrix Sd.

Table 1 summarizes the joint estimation of pharmacokinetic-rates and ICG concentration in different compart-

ments. In Table 1, Ĉd(k|k − 1) is the state estimate propagation at step k given all the measurements up to step

k− 1; Ĉd(k) is the state estimate update at step k; Pk,k−1 denotes the error covariance propagation at step k given

all the measurements up to step k−1; Pk,k is the error covariance update at step k; Sd is the preassigned covariance

matrix of ςd(k); Jk is the Jacobian matrix due to iterative linearization of the state equation at step k; Gk is the

recursive Kalman gain at step k; Rd is the covariance matrix of the measurements; Qd is the covariance matrix of

the concentration vector; and I is the identity matrix. A detailed discussion of the Kalman  ltering algorithm for

the joint estimation of the model parameters and ICG concentrations in different compartments can be found in

[19].

3) Clinical Results - Apparatus: : In this work, we use the data collected with a continuous wave (CW) NIR

imaging apparatus. The apparatus has 16 light sources, which are tungsten bulbs with less than 1 watt of output

power. They are located on a circular holder at an equal distance from each other with 22.5 degrees apart. Sixteen

detectors, namely, silicon photodiodes, are situated in the same plane. The breast is arranged in a pendular geometry

with the source-detector probes gently touching its surface. Figure 2 illustrates the con guration of the apparatus

and the con guration of the detectors and the sources in a circular plane. Note that sources and detectors are

co-located. The detectors use the same positions as the sources to collect the light originating from one source at

a time. Only the signals from the farthest 11 detectors are used in the analysis. For example, when Source 1 is
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on, the data is collected using Detectors 4 to 14. A band pass  lter at 805 nm, the absorption peak of ICG, is

placed in front of the sources to select the desired wavelength. A set of data for one source is collected every ∼

500 ms. The total time for a whole scan of the breast including 16 sources and 16 detectors is ∼ 8.8 seconds. A

more detailed explanation of the apparatus and the data collection procedure can be found in [32].

Protocol: Patients with suspicious breast tumors are enrolled for this study. ICG is injected intravenously by

bolus with a concentration of 0.25 mg per kg of body weight. Diagnostic information is obtained using biopsy

results. Since biopsy modi es the blood volume and blood  o w around the tumor region, measurements are made

prior to biopsy. Data acquisition started before the injection of ICG and continued for 10 minutes.

Tumor Information: Three different patients with different tumor types are included in this study. First case,

(Case 1), is  broadenoma, which corresponds to a mass estimated to be 1−2 cm in diameter within a breast of 9

cm diameter located at 6-7 o’clock. Second case, (Case 2), is adenocarcinoma corresponding to a tumor estimated

to be 2−3 cm in diameter within a breast of 7.7 cm diameter located at 4-5 o’clock. The third case, (Case 3), is

invasive ductal carcinoma, which corresponds to a mass estimated to be 4 by 3 cm located at 6 o’clock. Table 2

describes the tumor information for each patient.

4) ICG Concentration Measurements for Pharmacokinetic Parameter Estimations: Using the CW imager de-

scribed above, suf cient number of source-detector readings are collected from different angles for each patient.

Differential absorption images are reconstructed based on DDOT forward model given in (4). Using the linear

relationship (5) between ICG concentration, and absorption coef cient, ICG concentration images are obtained for

each case. A sample set of ICG concentration images for the selected time instants are shown in Figure 3, 4,

and 5 for Case 1, 2, and 3, respectively. Although only 9 images are displayed, there are around 50 images for

each case, each corresponding to a different time instant. Each image is composed of 649 voxels. Note that the

ICG concentration images in Figures 3, 4, and 5 represent the bulk ICG concentrations in the tissue, not the ICG

concentrations in plasma or in the EES compartments.

We next extract the time course of ICG concentration for each voxel. As an example, Figure 6 shows the time

course of ICG concentrations for all three cases for a speci c voxel around the tumor region (65th, 276th, 188th

voxel for Case 1, Case 2, and Case 3, respectively). We then  t the two-compartment model to each time course

data using the EKF framework; and estimate kin, kout, kelm, and the ICG concentrations in plasma and EES.

Spatially resolved images of kin, and kout for each case are shown in Figures 8(a)-(b), and 9(a)-(b), 10(a)-(b),

respectively. Additionally, we construct ICG concentration images for plasma and the EES compartments. Figures
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11-16 show the ICG concentration in plasma and the EES for 3 different time instants for Case 1, 2, and 3,

respectively. Our results show that the pharmacokinetic-rates are higher around the tumor region agreeing with the

fact that permeability increases around the tumor region due to compromised capillaries of cancer vessels. We also

observed that ICG concentrations in plasma and the EES compartments are higher around the tumors agreeing with

the hypothesis that around the tumor region ICG may act as a diffusible extravascular  o w in leaky capillary of

cancer vessels.

Using the brightest spot as a reference point, the a priori information on the location, and the size of the tumors,

we plot an ellipse (or a circle) to identify the approximate location and size of the tumor in the pharmacokinetic-rate

images. Figures 17(a), (b), and (c) present the kin images with approximate tumor location and size for Case 1, 2,

and 3, respectively. The consistency of the bright regions in the kin images, and circular/elliptical regions drawn

based on the a priori information shows that the pharmacokinetic-rate images provide good localization of tumors

and size information.

The histograms of kin and kout rates from inside and outside the tumor region (as indicated by circular/elliptical

regions) are shown in Figures 18(a), (b), and (c), and Figures 19(a), (b), and (c), respectively. The solid curves

in Figures 18 and 19 show the Gaussian  t. Clearly, pharmacokinetic-rate images facilitates analysis of the spatial

variation of the pharmacokinetic-rates for breast cancer screening, diagnosis, and staging. The histograms and their

Gaussian probability density function  ts in Figures 18 and 19 show that the mean and the standard deviation of

kin and kout values are different inside and outside the tumor region. Table 3 tabulates the mean values (± spatial

standard deviation) of the pharmacokinetic-rates from inside and outside the tumor regions for all three cases. The

total error (probability of false positive and false negative) using the Bayesian minimum error classi er is given by

the overlapping area between the two Gaussian  ts [33]. Table 4 tabulates the total Bayesian error. These small error

values show that the spatially resolved pharmacokinetics-rate analysis provide good sensitivity and speci city for

diagnosis. One other advantage of the pharmacokinetic-rate images is that they allow comparison of rates obtained

from healthy and tumor tissue for the patient itself since absolute (mean) values may be quite different from patient

to patient. For example, the kin rate for Case 3 obtained outside the tumor region is higher than the kin rate for

Case 1 obtained inside the tumor. Thus, using the pharmacokinetic-rates obtained from healthy tissue as a reference

to the tumor tissue for the same patient can improve diagnostic accuracy. However, very high mean values of kin

and kout may be indicative of the severity of malignancy. The pharmacokinetic rates are higher for Case 3 (invasive

ductal carcinoma), for both inside and outside the tumor region as compared to Case 2 (adenocarcinoma). Similarly,
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the kinetic rates are higher for Case 2 (adenocarcinoma), as compared to Case 1 ( broadenoma) for both inside

and outside the tumor region.

To further understand the value of spatially resolved pharmacokinetic-rate analysis as compared to the bulk

pharmacokinetic-rates, we averaged the concentration images spatially, and obtained a bulk concentration value for

each time instant. We then extracted a time curve for the bulk ICG concentrations. Figure 7 shows the resulting

bulk ICG concentration time curves for each case. Next, we  tted the two-compartment model to the resulting time

curves and estimated the bulk pharmacokinetic-rates. Table 5 tabulates the bulk pharmacokinetic-rates for each

patient. In Figure 20 and 21, the bulk pharmacokinetic-rates are overlaid on the histograms of the pharmacokinetic-

rate images obtained from inside and outside the tumor region. Figures 20 and 21 show the Bayesian minimum

error classi er threshold (the value corresponding to the intersection of the histograms) for each case. We see that

for Case 1, the bulk rates of kin, and kout are both classi ed as healthy tissue (outside the tumor region). For Case

2, kin is classi ed as cancerous tissue (inside the tumor region) and kout is classi ed as healthy tissue. Similarly for

Case 3, kin is classi ed as healthy and kout is classi ed as cancerous tissue. Clearly, the bulk rates do not provide

consistent diagnosis. On the other hand, spatially resolved pharmacokinetic-rates allow us to compare values from

the cancerous region to the healthy background, and provide higher sensitivity, and speci city as shown by the

Bayesian total error values in Table IV.

Capillary

Cp
kelm

kout kin
�

�

�

EES
Ce

Fig. 1. Block diagram of the two-compartment model for ICG pharmacokinetics.
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TABLE I

EKF ALGORITHM FOR SIMULTANEOUS ESTIMATION OF STATES AND PARAMETERS.

Initial Conditions

�
��

Ĉd(0)

θ̂(0)

�
�� =

�
��

E(Cd(0))

θ̂(0)

�
�� , P0,0 =

�
��

V ar(Cd(0)) 0

0 Sd

�
��

State Estimate Propagation

�
��

Ĉd(k|k − 1)

θ̂(k|k − 1)

�
�� =

�
��

Kd(θ̂(k − 1))Ĉd(k − 1)

θ̂(k − 1)

�
��

Error Covariance Propagation Pk,k−1 = Jk−1Pk−1,k−1JT
k−1 +

�
��

Qd 0

0 Sd

�
��

State Estimate Update

�
��

Ĉd(k)

θ̂(k)

�
�� =

�
��

Ĉd(k|k − 1)

θ̂(k|k − 1)

�
��

+Gk(m(k) − Vd(θ(k|k − 1))Cd(k|k − 1))

Error Covariance Update Pk,k = [I − HkΛk|k−1]Pk,k−1

Kalman Gain Hk = Pk,k−1Λ
T
k|k−1[Λk|k−1Pk,k−1Λ

T
k|k−1 + Rd]−1

Definitions Jk =

�
��

Kd(θ̂(k)) ∂

∂θ
[Kd(θ̂(k))Ĉd(k)]

0 I

�
�� Λk|k−1 =

�
��

Vd(θ(k|k − 1))

0

�
��

T

TABLE II

TUMOR INFORMATION FOR EACH PATIENT

Tumor Type Tumor Size Tumor Location

Case 1 Fibroadenoma 1-2 cm 6-7 o‘clock

Case 2 Adenocarcinoma 2-3 cm 4-5 o‘clock

Case 3 Invasive Ductal Carcinoma 4 by 3 cm 6 o‘clock

TABLE III

MEAN AND STANDARD DEVIATION OF PHARMACOKINETIC-RATES FOR INSIDE AND OUTSIDE THE TUMOR REGION

kin (sec−110−2) kout (sec−110−2) kelm (sec−110−3)

Inside Outside Inside Outside Inside Outside

Case 1 2.14±0.018 0.73±0.011 1.24±0.069 0.43±0.013 4.11±0.057 3.87±0.012

Case 2 2.92±0.076 1.14±0.052 1.58±0.051 0.65±0.036 3.94±0.081 4.12±0.047

Case 3 6.87±0.093 3.06±0.015 4.96±0.048 1.66±0.072 4.49±0.056 4.46±0.081
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TABLE IV

TOTAL ERROR (PROBABILITY OF FALSE POSITIVE AND FALSE NEGATIVE) IN TUMOR DIAGNOSIS BASED ON BAYESIAN MINIMUM

ERROR CLASSIFIER

Total Error for kin Total Error for kout

Case 1 6.67 × 10−2 13.34 × 10−2

Case 2 3.23 × 10−2 13.51× 10−2

Case 3 9.09× 10−2 3.64× 10−2

TABLE V

BULK PHARMACOKINETIC-RATES EXTRACTED FROM THE ENTIRE BREAST TISSUE

kin (sec−110−2) kout (sec−110−2) kelm (sec−110−1)

Case 1 0.84±0.013 0.62±0.017 3.66±0.042

Case 2 2.01±0.022 0.83±0.012 4.01±0.054

Case 3 4.06±0.072 3.36±0.051 4.37±0.052

Fig. 2. The cut section of the CW NIR imaging apparatus with 16 sources and detectors.
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Fig. 9. Spatially resolved pharmacokinetic-rate images, (a) kin, and (b) kout for Case 2.
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Fig. 10. Spatially resolved pharmacokinetic-rate images, (a) kin, and (b) kout for Case 3.
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Fig. 11. Spatially resolved ICG concentration images in plasma for Case 1 for the 246.4th, 334.4th, and 422.4th seconds.
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Fig. 12. Spatially resolved ICG concentration images in the EES for Case 1 for the 246.4th, 334.4th, and 422.4th seconds.
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Fig. 13. Spatially resolved ICG concentration images in plasma for Case 2 for the 228.8th, 316.8th, and 404.8th seconds.
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Fig. 14. Spatially resolved ICG concentration images in the EES for Case 2 for the 228.8th, 316.8th, and 404.8th seconds.
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Fig. 15. Spatially resolved ICG concentration images in plasma for Case 3 for the 246.4th, 378.4th, and 510.4th seconds.
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Fig. 16. Spatially resolved ICG concentration images in the EES for Case 3 for the 246.4th, 378.4th, and 510.4th seconds.
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Fig. 17. The kin images with approximate tumor location and size for Case 1, Case 2, and Case 3, respectively. An ellipse or a circle

identi es the approximate location, shape, and size of the tumor.
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Fig. 18. The histograms of kin for (a) Case 1, (b) Case 2, (c), Case 3 from inside (blue) and outside (gray) the tumor region (as indicated

by circular/elliptical regions). The solid lines in  gures shows the Gaussian  t.
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Fig. 19. The histograms of kout for (a) Case 1, (b) Case 2, (c), Case 3 from inside (blue) and outside (gray) the tumor region (as indicated

by circular/elliptical regions). The solid lines in  gures shows the Gaussian  t.
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Fig. 20. Bulk kin rates for (a) Case 1, (b) Case 2, (c), Case 3 together with histogram  ts. The solid blue line indicates the bulk

pharmacokinetic-rate, and the dashed red line indicates the Bayesian minimum error.
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B. AIM 3 - Tasks 1-4

The SOW with regard to Aim 3 includes the following speci c tasks:

• Task 1. Determine statistical variability of each NIR feature inside and outside the suspected tumor in an

individual and evaluate the statistical signi cance of the measured difference with the instrumentation precision.

12-18th month

• Task 2. Design statistical classi ers to determine the ROC of each NIR feature for an individual. 18-24th

month

• Task 3. Evaluate the ROC, positive predicted value (PPV) and negative predicted value (NPV) of various

combinations of the NIR features for an individual. 24-27th month

• Task 4. Investigate the signi cance of the measured difference between malignant and benign tumor patient

groups for single and combined NIR features. 27-30th month

Year 3 tasks involve Task 3 and 4.

This work describes the characterization ef cienc y of optical properties of breast tumors based on the features

obtained using in vivo near-infrared (NIR) spectroscopy measurements. Three features, relative blood concentration,

oxygen saturation and the size of the tumor, are used to diagnose benign and malignant tumors. The performance of

the proposed set of features are evaluated by various classi ers using data acquired from 44 patients with malignant

tumors, and 72 patients with benign tumors. The area under the receiver operating characteristics (ROC) curve of

the scaled nearest mean classi er (NMSC) using the three features yields a value of 0.91 with a signi cance level

of 0.05. Our results suggest that the features, relative blood concentration, and oxygen saturation can differentiate

breast tumors with a relatively high precision.

1) Methods: Apparatus: In this study, a continuous wave (CW) near infrared spectrometer (NIRS) is used [?].

The apparatus includes a probe (Fig. 22). In the center of the probe there is a 3-wavelength light emitting diode

(LED). The probe consisted of one multi-wavelength LED as a light source and 8 silicon diodes as detectors.

The detectors surround the LED with a 4 cm radius. The light intensity from the detectors was adjusted to be

approximately 1 volt and calibrated with a phantom with known absorption and scattering coef cients.

Patients and Protocol: This study includes two centers, namely, the Abramson Family Cancer Research Institute,

Department of Radiology of the Hospital of University of Pennsylvania (HUP), and the Department of Gynecology

of Leipzig University (DGLU). HUP provided 24 patients with malignant and 64 patients benign tumors. DGLU

provided 20 patients with malignant and 6 benign tumors.
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Fig. 22. The NIR probe with a multi-wavelength LED and 8 silicon diodes as detectors.

TABLE VI

AUC VALUES FOR DIFFERENT CLASSIFIERS FOR F1-F2-F3: ΔBV , ΔDeoxy, S

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC

AUC 0.9098 0.9041 0.9017 0.8984 0.8864 0.8843 0.8807 0.8752

The measurements are taken on the breast with tumor. Then, the probe is transferred to the tumor free contralateral

breast to include the mirror image location of the suspected cancer. The sensors giving the largest changes with

respect to the mirror image position on the contralateral breast are related to the suspected cancer. Feature Extraction:

In this study, three features, namely, relative blood concentration, ΔBV , oxygen saturation, ΔDeoxy, and the size

of the tumor, S, are used.

The features, ΔBV , and ΔDeoxy are obtained using

ΔOD = εΔCL (14)

where OD is the optical density, ε is the extinction coef cient, C is blood concentration, L is the mean pathlength

of photons, and Δ denotes relative change. Here, ε ≈ 1 cm−1, and L = 4 cm for a pathlength factor of 5.

Following (1), the relative blood concentration, ΔBV , and the oxygen saturation, ΔDeoxy, can be approximated

at two different wavelengths by

ΔBV ∝ 0.3ΔOD730 + ΔOD850 (15)

ΔDeoxy ∝ 1.3ΔOD730 + ΔOD850 (16)

where ΔOD730, and ΔOD850 denote the relative changes in optical density at 730 nm and 850 nm, respectively.

ΔBV and ΔDeoxy can also be approximated by

ΔBV ∝ Δ[Hb] + Δ[HbO2] (17)
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TABLE VII

AUC VALUES FOR DIFFERENT CLASSIFIERS FOR F1-F2: ΔBV , ΔDeoxy

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC

AUC 0.9001 0.8993 0.8930 0.8908 0.8992 0.8821 0.8782 0.8645

ΔDeoxy ∝ Δ[HbO2] − Δ[Hb] (18)

where Δ[Hb], and Δ[HbO2] denote the relative change in deoxyhemoglobin (Hb) and oxyhemoglobin (Hb02).

The concentrations of Hb, and HbO2 in (17) and (18) are calculated by the Beer-Lambert Law given by

ΔOD = log
I0

I
(19)

where I is light intensity after absorption and scattering, and I0 is the baseline light intensity obtained from the

contralateral breast, using known extinction coef cients of Hb, HbO2 and differential pathlength factors [16].

Here, it is important to note that, ΔBV , and ΔDeoxy values are based on a lipid blood oxygen model. Thus

the increments of BV and Deoxy are relative to the contralateral breast:

ΔBV = ΔBVtumor − ΔBVcontra (20)

ΔDeoxy = ΔDeoxytumor − ΔDeoxycontra (21)

where ΔBVtumor, ΔBVcontra are relative blood volume in the tumor breast and the mirror image position of the

contralateral breast, respectively, and ΔDeoxytumor, ΔDeoxycontra are relative oxygen saturation in the tumor

breast and the mirror image position of the contralateral breast, respectively.

Feature Analysis and Tumor Classification: In this subsection, we present the set of tumor classi cation features,

and the malignancy differentiation criteria. F1 denotes ΔBV , F2 denotes ΔDeoxy, and F3 denotes, S, size of the

tumor. We evaluate the malignancy differentiation capability of the individual features and various combinations

of the these features using a set of classi ers, namely, k-nearest neighbor classi er (KNNC), Parzen density based

classi er (PAR), automatic neural network classi er (NEURC), normal densities based linear classi er (LDC),

nearest mean classi er (NMC), scaled nearest mean classi er (NMSC), normal densities based quadratic classi er

(QDC), uncorrelated normal densities based quadratic classi er (UDC). The more details information on these

classi ers can be found in [17].

We evaluated the malignancy differentiation capability of the following individual and combined features:

F1: ΔBV
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F2 : ΔDeoxy

F3 : Tumor Size (S)

F1-F2: ΔBV and ΔDeoxy

F1-F2-F3: ΔBV , ΔDeoxy, and S

2) Statistical Analysis of Clinical Data: The evaluation is based on receiver operating characteristics (ROC)

methodology. The ROC curve is obtained by plotting the probability of false positive rate versus the probability

of detection. The evaluation of classi cation method is done using area under the ROC curve (AUC). First, we
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Fig. 23. Scaled Nearest Mean Classi er and F1-F2 2-D data clustering.

evaluated the classi cation performance of all three features. Table VI presents the AUC values for 8 different

classi ers for all three features. The NMSC has the best performance in terms of classi cation with a AUC value

of 0.9098 followed by the Parzen classi er with a AUC value of 0.9041.

Next, we evaluated the performance of the two features measured by NIR spectroscopy. Table VII presents the

AUC values for 8 different classi ers for features ΔBV and ΔDeoxy. Again, the NMSC performed the best in

terms of classi cation with a AUC value of 0.9001. Finally, we evaluated the individual classi cation performances

of the three features. Table VIII presents the AUC values for 8 different classi ers for the feature ΔBV . The NMC

has the best performance in terms of classi cation with a AUC value of 0.8832. Table IX presents the results 8

different classi ers for the feature ΔDeoxy. The NMC has the best performance in terms of classi cation with a

AUC value of 0.879. Table X presents the results 8 different classi ers for the feature S. The QDC has the best

performance in terms of classi cation with a AUC value of 0.5612.
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Fig. 24. Parzen and F1-F2 2-D data clustering.

TABLE VIII

AUC VALUES FOR DIFFERENT CLASSIFIERS FOR F1: ΔBV

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC

AUC 0.8817 0.8764 0.8807 0.8779 0.8513 0.8778 0.8832 0.8302

As it can be seen from Tables VI, and VII, the best performing feature set is the combination of the three

features. We can also conclude from Table X that, the tumor size can not be used to differentiate healthy and

diseased tissues with an AUC value of around 0.5. However, the combination set of optical indices, obtained

using optical measurements, can differentiate breast tumors with a relatively high precision with a AUC value of

0.9. Similarly, optical indices, ΔBV and ΔDeoxy, also performed well with AUC values of 0.883 and 0.879,

respectively.

Figures 23, and 24 show the distribution of features ΔBV , and ΔDeoxy extracted from benign and malignant

tumors. The thresholds were computed using scaled nearest mean classi er and Parzen classi ers. Figure 25 presents,

the ROC curves for all three features, and the best two features, namely, ΔDeoxy and ΔBV . The observed area

under the ROC curve for F1-F2-F3, and F1-F2 are 0.9098, and 0.9001, respectively. Figure 26 presents the ROC

curves for individual features F1, and F2 using the nearest mean classi er . The observed area under the ROC curve

for F1, and F2 are 0.8832 and 0.8790, respectively.
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TABLE IX

AUC VALUES FOR DIFFERENT CLASSIFIERS FOR F2: ΔDeoxy

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC

AUC 0.8787 0.8764 0.8776 0.8711 0.8491 0.8613 0.8790 0.8331

TABLE X

AUC VALUES FOR DIFFERENT CLASSIFIERS FOR F3: S

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC

AUC 0.5123 0.5292 0.4782 0.5429 0.5382 0.5612 0.5112 0.4827
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Fig. 25. ROC curves for F1-F2-F3 and F1-F2 using NMSC Classi er .
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III. KEY RESEARCH ACCOMPLISHMENTS

1) We developed a method of analyzing the discretization error in diffuse optical image reconstruction and

developed a novel adaptive mesh generation algorithm based on MR a priori anatomical images. We applied

our method to diffuse optical absorption imaging. The results of this work is published in two journal articles

in Inverse Problems (8),(9).

2) We developed an adaptive mesh generation algorithms for diffuse optical imaging for simultaneous recon-

struction of diffusion and absorption images. This work is currently being prepared as a journal paper.

3) We demonstrated, for the  rst time in the literature, the value of spatially resolved pharmacokinetic-rates as

opposed to bulk-rates using in vivo breast cancer patient data. This work is submitted as a journal paper to

IEEE Transactions in Biomedical Engineering (1).

4) We developed methods of reconstructing pharmacokinetic-rate images directly from NIR boundary measure-

ments and applied our technique to in vivo breast cancer data. The results show that the technique is robust

and provides better signal-to-noise ratio images. We are in the process of assessing the implications of this

results in breast cancer diagnosis and staging.

5) We further analyze the NIR parameters collected from 116 patients using NIR spectroscopy and reported a

short version of our results in (2). This work is currently being prepared as a journal paper.

IV. REPORTABLE OUTCOMES

Complete list of outcomes is given below:

1) B. Alacam, B. Yazici, X. Intes, B. Chance, S. Nioka, “Pharmacokinetic-Rate Images of Indocyanine Green for

Breast Tumors using Near Infrared Optical Methods,” in review IEEE Transaction in Biomedical Engineering,

May 2007.

2) B. Alacam, B. Yazici. B. Chance, S. Nioka, “Characterization of Breast Tumors with NIR Methods using

Optical Indices,” to be published in 29th IEEE EMBS Conference, 2007.

3) B. Alacam, B. Yazici X. Intes, B. Chance, “Extended Kalman  ltering for the modeling and analysis of

ICG pharmacokinetics in cancerous tumors using NIR optical methods,” IEEE Transactions in Biomedical

Engineering, Vol. 53-10, pp: 1861-1871, 2006.

4) B. Alacam, B. Yazici, X. Intes, S. Nioka, B. Chance, “Spatially resolved pharmacokinetic rate images of ICG
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using Near Infrared optical methods”, Proc. of 2006 SPIE Photonic West, San Jose, California USA, 21- 26

January 2006, vol. 6088. pp. 455-464.

5) B. Alacam, B. Yazici, X. Intes, S. Nioka, B. Chance, “Direct reconstruction of pharmacokinetic rate Images

of Indocyanine Green in  uorescence molecular tomography” Proceedings of Biomedical Optics Topical

Meeting, Fort Lauderdale, Florida, USA , 19-22 March, 2006, No. SH65.

6) B. Alacam, B. Yazici, A. Serdaroglu, X. Intes, B. Chance, “Reconstruction of spatially resolved pharmacoki-

netic rate images of  uorescence agents in FDOT” Proc. of EMBS-28th Anniversary Conference, September,

2006, New York, pp. 5627 5630.

7) B. Alacam, B. Yazici, X. Intes, B. Chance, ”Direct reconstruction of spatially resolved pharmacokinetic rate

images of  uorescence agents” to be submitted to IEEE Transactions in Medical Imaging.

8) M. Guven, B. Yazici, K. Kwon, E. Giladi, X. Intes, Effect of discretization error and adaptive mesh generation

in diffuse optical absorption imaging: Part II,” Inverse Problems, Vol. 23, pp: 1135-1160, May 2007.

9) M. Guven, B. Yazici, K. Kwon, E. Giladi, X. Intes, Effect of discretization error and adaptive mesh generation

in diffuse optical absorption imaging: Part I,” Inverse Problems, Vol. 23, pp: 1115-1133, May 2007.

10) K. Kwon, B. Yazici, and M. Guven Two-level domain decomposition methods for diffuse optical tomography,

Inverse Problems, Vol. 22, pp: 1533-1559, 2006.

11) K. Kwon and B. Yazici, Born expansion and Frechet derivatives in diffuse optical tomography, submitted to

Inverse Problems, May 2006.

12) M. Guven, B. Yazici, K. Kwon, E. Giladi, and X. Intes, Adaptive mesh generation for DOT to reduce the

error resulting from discretization”, IEEE Symposium in Biomedical Imaging, April 2007. invited.

13) M. Guven, B. Yazici and V. Ntziachristos, Fluorescence diffuse optical Image reconstruction with a priori

information, Proceedings of SPIE Photonics West 2007. Invited.

V. CONCLUSIONS

In the last 12 months, we continued to analyze the 116 breast cancer patient data obtained using NIR spectroscopy

and re ne our imaging algorithms. We showed that excluding the pharmacokinetic rate images, the NIR parameters

alone can provide an AUC value of 0.9 or higher. Additionally, we analyzed the three in vivo breast cancer patient

data acquired using a dynamic time-resolved tomographic system. The patients were injected ICG (an optical

contrast agent) and diffuse optical tomographic data was collected before and after the injection. We reconstructed
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the spatially resolved pharmacokinetic-rates of ICG using variety of techniques and analyzed the resulting images

in terms of diagnostic value. Our analysis shows that the spatially-resolved pharmacokinetic rates provide superior

diagnostic information in terms of speci city and sensitivity as compared to a single set of pharmacokinetic-rates

obtained using spectroscopic techniques.

We continued to re ne our NIR imaging algorithms. We published a novel adaptive meshing algorithms for diffuse

optical absorption imaging using the MR a priori information. We extended our algorithms for simultaneous recon-

struction of diffusion and absorption images. We also developed methods of pharmacokinetic-rate images directly

from NIR boundary measurements which provide robust reconstruction with higher SNR than the pharmacokinetic-

rate images obtained from absorption images. We are currently assessing the value of this technique in breast cancer

diagnosis in terms of sensitivity and speci city .
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Abstract

In this paper, we develop a method of forming pharmacokinetic-rate images of indocyanine green

(ICG) and apply our method to three sets ofin vivo data obtained from breast cancer patients. To form

pharmacokinetic-rate images, we first obtain a sequence of ICG concentration images using the differential

diffuse optical tomography technique. We next employ a two-compartment model composed of plasma,

and extracellular-extravascular space (EES), and estimate the pharmacokinetic-rates and concentrations in

each compartment using the extended Kalman filtering framework. The pharmacokinetic-rate images of

the three patient show that the rates from inside and outsidethe tumor region are statistically different with

very low probability of false negative and false positive. Additionally, the ICG concentrations in plasma,

and the EES compartments are higher around the tumor region tumor agreeing with the hypothesis that

around the tumor region ICG may act as a diffusible extravascular flow in compromised capillary of

cancer vessels. Our study shows that the pharmacokinetic-rate images provide superior information than

single set of pharmacokinetic-rates estimated from the entire breast tissue for breast cancer diagnosis.

Keywords: Pharmacokinetic analysis, indocyanine green, differential diffuse optical tomography, breast cancer.
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I. INTRODUCTION

Near infrared (NIR) diffuse optical imaging offers severaladvantages over other imaging modalities

[1]–[7]. NIR techniques are minimally invasive, easy to use, relatively inexpensive, and can be made

portable. Moreover, optical techniques, when coupled withcontrast agents, have the potential to pro-

vide molecular/cellular level information, which can improve cancer detection, staging, and treatment

monitoring [3], [4], [8]–[10].

Among many commercially available optical contrast agents, only indocyanine green (ICG) is approved

for use in humans by the Food and Drug Administration [11]–[13]. ICG is a blood pooling agent that

has different delivery behavior between normal and cancer vasculature. In normal tissue, ICG acts as

a blood flow indicator in tight capillaries of normal vessel. However in cancerous tumor, ICG may

act as a diffusible (extravascular) flow in leaky capillary ofcancer vessels [8], [10], [14]. Therefore,

pharmacokinetics of ICG has the potential to provide new tools for tumor detection, diagnosis, and

staging.

One approach to analyze pharmacokinetics of contrast agents is the compartmental modeling [15]–

[17]. A number of studies using compartmental modeling werereported to show the feasibility of ICG

pharmacokinetics in tumor characterization [8]–[10]. Cuccia et al. [8] presented a study of the dynamics

of ICG in an adenocarcinoma rat tumor model using a two-compartment model. Intes et al. [9] presented

the uptake of ICG in breast tumors using a continuous wave diffuse optical tomography apparatus using

a two-compartment model. We recently introduced the extended Kalman filtering (EKF) framework to

model and estimate the ICG pharmacokinetics and tested three different compartmental models for the

ICG pharmacokinetics using thein vivo NIR data collected from Fischer rats with cancerous tumors [10].

Our study suggests that the pharmacokinetic-rates out of the vasculature are higher in edematous tumors

as compared to necrotic tumors.

In all the studies described above, the pharmacokinetic-rates are assumed to be constant over a tissue

volume that may be as large as the entire imaging domain. However, pharmacokinetic-rates are expected

to be different in healthy and cancerous tissue as reported in positron emission tomography (PET), and

magnetic resonance imaging (MRI) literature. In [18]–[20], it was shown that the spatially resolved

pharmacokinetic-rates increase sensitivity and specificity for breast cancer diagnosis. For example, in

[18], Sun et al. showed that FAU (1-2’-deoxy-2’-fluoro-β-D-arabinfuranosyl urasil, a PET contrast agent)
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accumulation in tumor region is significantly higher when compared to normal breast tissue based on

pharmacokinetic-rate images. Mussurakis et al. [19] showed that the pharmacokinetics of gadolinium-

DTPA (an MRI contrast agent) can be used to differentiate between malignant and benign breast tumors

with a high accuracy. It has also been shown that the spatially resolved image interpretation is superior

to the isolated use of quantitative pharmacokinetic-rates. Since gadolinium-DTPA kinetics is expected to

be similar to ICG, [19], and [20] suggest that the spatially resolved ICG pharmacokinetic analysis may

provide better sensitivity and specificity.

In the area of diffuse NIR spectroscopy and imaging, a numberof studies on spatially resolved

pharmacokinetic-rates has been reported [21], [22]. Gurfinkel et al. [21] presentedin vivo NIR reflectance

images of ICG pharmacokinetics to discriminate canine adenocarcinoma (located at 0.5-1 cm depth)

from normal mammary tissue. These images were generated by a non-tomographic technique using a

CCD camera that is suitable only to image tumors close to surface. In [22], Milstein et al. presented a

Bayesian tomographic image reconstruction method to form pharmacokinetic-rate images of ICG based

on fluorescence diffuse optical tomography. Numerical simulations show that the method provides good

contrast. However, no real data experiments were presentedto study the clinical value of spatially resolved

pharmacokinetic-rates.

In this paper, we present a method of forming pharmacokinetic-rate images and report spatially resolved

pharmacokinetic-rates of ICG using thein vivo NIR data acquired from three breast cancer patients.

To the best of our knowledge, our work is the first presenting the pharmacokinetic-rate images of an

optical contrast agent usingin vivo breast data based on tomographic techniques. We first developa

set of spatio-temporally resolved ICG concentration images based on differential diffuse optical tomog-

raphy. We model the ICG pharmacokinetics by a two-compartment model composed of plasma and

extracellular-extravascular space (EES) compartments. We then estimate the ICG pharmacokinetic-rates

and the concentrations in different compartments based on the EKF framework [10]. We show that the

pharmacokinetic-rates from inside and outside the tumor region are statistically different. Total error

values using the Bayesian minimum error classifier show that spatially resolved pharmacokinetic-rate

analysis provides very good sensitivity and specificity. We also estimate a single set of pharmacokinetic-

rates (bulk pharmacokinetic-rates) for the entire breast tissue. Our study indicates that spatially resolved

pharmacokinetic-rates provides more consistent and superior diagnostic information as compared to the

bulk pharmacokinetic-rates.
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The rest of the paper is organized as follows: In Section II, we present the reconstruction of ICG

concentration images. In Section III, we present modeling and estimation of ICG pharmacokinetics using

the EKF framework. In Section IV, we describe the clinical results obtained from breast cancer patients.

Section V summarizes our results and conclusion.

II. RECONSTRUCTION OFBULK ICG CONCENTRATION IMAGES

In our data collection process, a sequence of boundary measurements are collected over a period

of time. Each set of measurements are used to form a frame of theICG concentration images. The

resulting sequence of ICG concentration images are then used to form pharmacokinetic-rate images. To

reconstruct each frame of the ICG concentration images, we follow a static reconstruction approach and

use differential diffuse optical tomography (DDOT) technique [9], [23].

In DDOT, two sets of excitation measurements are collected corresponding to before and after the

ICG injection, and the ICG concentration is determined by the perturbation method [9], [23]. The photon

propagation before and after the injection is modeled by thefollowing diffusion equation:

∇ · [Dx∇Φ±

x (r, ω) − [µ±

ax(r) + jω/c]Φ±

x (r, ω) = 0, r ∈ Ω ⊆ R
3 (1)

with Robin-type boundary conditions:

2Dx

∂Φ±
x

∂ν
+ ρΦ±

x = −S(r, ω), r ∈ ∂Ω. (2)

wherex stands for the excitation,c is the speed of light inside the mediumΩ; ω denotes the modulation

frequency of the source,µ−
ax(r) and µ+

ax(r) are the absorption coefficients before and after the ICG

injection, Dx is the diffusion coefficient which is assumed to be constant,Φ±
x (r, ω) optical field at

location r before and after the ICG injection. Here,ν denotes the outward normal to the boundary∂Ω

of Ω, ρ is a constant representing the refractive index mismatch between the two regions separated by

∂Ω, andS(r, ω) is the excitation source on the boundary.

The absorption coefficient after the injectionµ+
ax are modeled as a sum of the absorption coefficient

of the medium before the ICG injectionµ−
ax and the perturbation caused by the ICG∆µax(r):

∆µax(r) = µ+
ax(r) − µ−

ax(r), r ∈ Ω ⊆ R
3. (3)

In the forward model, the analytical solutions of the heterogonous diffusion equation given in (1) is

derived using first order Rytov approximation [9]. The sample volume is divided into a set of voxels and
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the measurements are related to the relative absorption coefficients of each voxel by a system of linear

equations. The shape of the breast was approximated as a cylinder and the Kirchhoff approximation [24],

[25] for diffuse waves was used to model the interaction of light with boundaries. In order to account

for the biological noise, the forward model was implementedwith coupling coefficient technique [26].

Here, the Rytov-type measurements, which are defined by the natural logarithm of the ratio of the

post-ICG measurements to the pre-ICG measurements were used [23]. Let Ψx(rd, ω; rs) denote the

Rytov-type measurements at locationrd due to source atrs. The linearized relationship between the

differential absorption coefficient and measurements is given by [27],

Ψx(rd, ω; rs) = −
1

Φ−
x (rd, ω; rs)

∫
Ω

G−

x (r − rd, ω; rs)Ix(r)Φ−

x (r, ω; rs)d3r (4)

where Φ−
x (r, ω; rs) is the photon density obtained at the excitation wavelengthbefore ICG injection,

Ix(r) = c∆µax(r)/Dx, andG−
x (r− rd, ω; rs) is the Green’s function of (1) for a source atrs before the

injection describing the propagation of light from the heterogeneityr to the detector atrd.

We address the inverse problem of recovering∆µax from Rytov-measurementsΨx based on the

forward model (4) using the singular value decomposition ofthe Moore-Penrose generalized system. We

use a zeroth-order Tikhonov regularization to stabilize the inversion procedure. We apply the L-curve

method to an experimental model reconstruction and derive the best regularization parameter using a

curvature function as described in [28]. A detailed discussion of the forward and inverse models used

for the reconstruction of differential absorption coefficients (∆µax) can be found in [9].

To construct a set of ICG concentration images, we use the linear relationship between the differential

absorption coefficients and ICG concentrations [29]:

∆µa(r) = ln 10 ǫλ m(r) = 2.303 ǫλ m(r) (5)

whereǫλ is the extinction coefficient of ICG at the wavelength 805nm,m(r) is the bulk ICG concentration

in the tissue, and∆µa(r) is as defined in (3).

III. M ODELING AND ESTIMATION OF ICG PHARMACOKINETICS

A. Two-compartment Model of ICG Pharmacokinetics

Using the method outlined in Section 2, we reconstruct a sequence of ICG concentration images. As

an example, Figure 3 shows a set of images reconstructed fromin vivo breast data.
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Our objective is to model the pharmacokinetics of ICG at eachvoxel of ICG concentration images

using compartmental modeling. To do so, we first extracted thetime varying ICG concentration curves

for each voxel from the sequence of ICG concentration images. An example of such a curve is shown

in Figure 6. We next fit a two-compartment model to each ICG concentration curve [10], [21]. Figure 1

shows the two-compartment model for ICG kinetics. Here, plasma and extracellular-extravascular space

(EES) constitute the two compartments.Cp andCe represent the ICG concentrations in plasma and the

EES, respectively. The rateskin andkout govern the leakage into and the drainage out of the EES. The

parameterkelm describes the ICG elimination from the body through kidneysand livers.

Using the two-compartment model introduced in [10], ICG transition between plasma and the EES

can be modeled as follows:
 Ċe(t)

Ċp(t)


 =


 −kout kin

kout −(kin + kelm)





 Ce(t)

Cp(t)


 + ω(t), (6)

whereCp(t) and Ce(t) represent the ICG concentrations in plasma and the EES at timet ∈ [T0, T1],

respectively. The rateskin, kout, and kelm have a unit ofsec−1. They are defined as the permeability

surface area products given byPSρ, whereP is the capillary permeability constant,S is the capillary

surface area, andρ is the tissue density. Here,ω(t) is uncorrelated zero-mean Gaussian process with

covariance matrixQ representing the model mismatch.

The actual total ICG concentration in the tissue is a linear combination of plasma and the EES ICG

concentrations modeled as:

m(t) =
[

ve vp

] 
 Ce(t)

Cp(t)


 + η(t) (7)

wherem(t), Ce(t), and Cp(t) are defined in (5) and (6);vp and ve are plasma and the EES volume

fractions, respectively; andη(t) is uncorrelated zero-mean Gaussian process with covariance matrix R,

representing the measurement noise.

B. Estimation of ICG Pharmacokinetics using Extended Kalman Filtering

In matrix-vector notation, (6) and (7) can be expressed as:

Ċ(t) = K(α)C(t) + ω(t), (8)

m(t) = V(α)C(t) + η(t),
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whereC(t) denotes the concentration vector with elementsCe(t), andCp(t); K(α) is the system matrix,

V(α) is the measurement matrix as defined in equation (7), andα is the parameter vector given by

α = [kout kin kelm ve vp]T . (9)

The ICG measurements in (8) are collected at discrete time instances,t = kT , k = 0, 1, ..., whereT

is the sampling period. Therefore, the continuous model described in (8) is discretized. We can express

the discrete compartmental model as follows:

Cd(k + 1) = Kd(θ)Cd(k) + ωd(k), (10)

m(k) = Vd(θ)Cd(k) + ηd(k),

whereKd(θ) = eK(α) is the discrete time system matrix;Vd(θ) = V(α) is the discrete measurement

matrix; ωd(k) and ηd(k) are zero-mean Gaussian white noise processes with covariances matrixQd

and varianceRd, respectively. The vectorθ is composed of parametersτij which are functions the

pharmacokinetic-rates and volume fractions:

θ =
[

τ11 τ12 τ21 τ22 ve vp

]T

. (11)

We first estimateτij ’s, i, j = 1, 2 and then compute the pharmacokinetic-rateskin, kout andkelm [10],

[30]. The explicit form of the discrete state-space model is given as follows:
 Ce(k + 1)

Cp(k + 1)


 =


 τ11 τ12

τ21 τ22





 Ce(k)

Cp(k)


 + ωd(k) (12)

m(k) =
[

ve vp

] 
 Ce(k)

Cp(k)


 + ηd(k).

We estimate the parameter vectorθ and concentration vectorCd by using the EKF framework. The

EKF is a recursive modeling and estimation method with numerous advantages in ICG pharmacokinetic

modeling [10]. These include effective modeling of multiplecompartments, and multiple measurement

systems in the presence of measurement noise and uncertainties in the compartmental model dynamics,

simultaneous estimation of model parameters and ICG concentrations in each compartment, statistical

validation of estimated concentrations and error bounds onthe model parameter estimates, and incor-

poration of available a priori information about the initial conditions of the permeability rates into the

estimation procedure.
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When both states (ICG concentrations) and model parameters(pharmacokinetic-rates and volume

fractions) are unknown, a linear state-space model can be regarded as a non-linear model; the linear

system parameters and states combine to form the new states of the non-linear model. This system is

then linearized and the new unknown states are found using the EKF estimator [10], [31]–[33]. In EKF

framework,θ can be treated as a random process with the following model:

θ(k + 1) = θ(k) + ςd(k), (13)

whereςd(k) is a zero-mean Gaussian process with covariance matrixSd.

Table 1 summarizes the joint estimation of pharmacokinetic-rates and ICG concentration in different

compartments. In Table 1,̂Cd(k|k − 1) is the state estimate propagation at stepk given all the measure-

ments up to stepk − 1; Ĉd(k) is the state estimate update at stepk; Pk,k−1 denotes the error covariance

propagation at stepk given all the measurements up to stepk − 1; Pk,k is the error covariance update

at stepk; Sd is the preassigned covariance matrix ofςd(k); Jk is the Jacobian matrix due to iterative

linearization of the state equation at stepk; Gk is the recursive Kalman gain at stepk; Rd is the covariance

matrix of the measurements;Qd is the covariance matrix of the concentration vector; andI is the identity

matrix. A detailed discussion of the Kalman filtering algorithm for the joint estimation of the model

parameters and ICG concentrations in different compartments can be found in [10].

IV. CLINICAL RESULTS

A. Apparatus

In this work, we use the data collected with a continuous wave(CW) NIR imaging apparatus. The

apparatus has 16 light sources, which are tungsten bulbs with less than 1 watt of output power. They are

located on a circular holder at an equal distance from each other with 22.5 degrees apart. Sixteen detectors,

namely, silicon photodiodes, are situated in the same plane. The breast is arranged in a pendular geometry

with the source-detector probes gently touching its surface. Figure 2 illustrates the configuration of the

apparatus and the configuration of the detectors and the sources in a circular plane. Note that sources

and detectors are co-located. The detectors use the same positions as the sources to collect the light

originating from one source at a time. Only the signals from the farthest 11 detectors are used in the

analysis. For example, when Source 1 is on, the data is collected using Detectors 4 to 14. A band pass

filter at 805 nm, the absorption peak of ICG, is placed in front of the sources to select the desired
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wavelength. A set of data for one source is collected every∼ 500 ms. The total time for a whole scan

of the breast including 16 sources and 16 detectors is∼ 8.8 seconds. A more detailed explanation of the

apparatus and the data collection procedure can be found in [34].

B. Protocol

Patients with suspicious breast tumors are enrolled for this study. ICG is injected intravenously by bolus

with a concentration of 0.25 mg per kg of body weight. Diagnostic information is obtained using biopsy

results. Since biopsy modifies the blood volume and blood flow around the tumor region, measurements

are made prior to biopsy. Data acquisition started before the injection of ICG and continued for 10

minutes.

C. Tumor Information

Three different patients with different tumor types are included in this study. First case, (Case 1), is

fibroadenoma, which corresponds to a mass estimated to be 1−2 cm in diameter within a breast of 9

cm diameter located at 6-7 o’clock. Second case, (Case 2), is adenocarcinoma corresponding to a tumor

estimated to be 2−3 cm in diameter within a breast of 7.7 cm diameter located at 4-5 o’clock. The third

case, (Case 3), is invasive ductal carcinoma, which corresponds to a mass estimated to be 4 by 3 cm

located at 6 o’clock. Table 2 describes the tumor information for each patient.

D. ICG Concentration Measurements for Pharmacokinetic Parameter Estimations

Using the CW imager described above, sufficient number of source-detector readings are collected

from different angles for each patient. Differential absorption images are reconstructed based on DDOT

forward model given in (4). Using the linear relationship (5) between ICG concentration, and absorption

coefficient, ICG concentration images are obtained for each case. A sample set of ICG concentration

images for the selected time instants are shown in Figure 3, 4,and 5 for Case 1, 2, and 3, respectively.

Although only 9 images are displayed, there are around 50 images for each case, each corresponding to

a different time instant. Each image is composed of 649 voxels. Note that the ICG concentration images

in Figures 3, 4, and 5 represent the bulk ICG concentrations inthe tissue, not the ICG concentrations in

plasma or in the EES compartments.
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We next extract the time course of ICG concentration for eachvoxel. As an example, Figure 6 shows

the time course of ICG concentrations for all three cases fora specific voxel around the tumor region

(65th, 276th, 188th voxel for Case 1, Case 2, and Case 3, respectively). We then fit the two-compartment

model to each time course data using the EKF framework; and estimate kin, kout, kelm, and the ICG

concentrations in plasma and EES. Spatially resolved images ofkin, andkout for each case are shown

in Figures 8(a)-(b), and 9(a)-(b), 10(a)-(b), respectively. Additionally, we construct ICG concentration

images for plasma and the EES compartments. Figures 11-16 show the ICG concentration in plasma

and the EES for 3 different time instants for Case 1, 2, and 3, respectively. Our results show that

the pharmacokinetic-rates are higher around the tumor region agreeing with the fact that permeability

increases around the tumor region due to compromised capillaries of cancer vessels. We also observed

that ICG concentrations in plasma and the EES compartments arehigher around the tumors agreeing

with the hypothesis that around the tumor region ICG may act as a diffusible extravascular flow in leaky

capillary of cancer vessels.

Using the brightest spot as a reference point, thea priori information on the location, and the size of

the tumors, we plot an ellipse (or a circle) to identify the approximate location and size of the tumor

in the pharmacokinetic-rate images. Figures 17(a), (b), and(c) present thekin images with approximate

tumor location and size for Case 1, 2, and 3, respectively. Theconsistency of the bright regions in

the kin images, and circular/elliptical regions drawn based on thea priori information shows that the

pharmacokinetic-rate images provide good localization oftumors and size information.

The histograms ofkin and kout rates from inside and outside the tumor region (as indicatedby

circular/elliptical regions) are shown in Figures 18(a), (b), and (c), and Figures 19(a), (b), and (c),

respectively. The solid curves in Figures 18 and 19 show the Gaussian fit. Clearly, pharmacokinetic-

rate images facilitates analysis of the spatial variation of the pharmacokinetic-rates for breast cancer

screening, diagnosis, and staging. The histograms and theirGaussian probability density function fits in

Figures 18 and 19 show that the mean and the standard deviationof kin and kout values are different

inside and outside the tumor region. Table 3 tabulates the mean values (± spatial standard deviation) of

the pharmacokinetic-rates from inside and outside the tumor regions for all three cases. The total error

(probability of false positive and false negative) using the Bayesian minimum error classifier is given by

the overlapping area between the two Gaussian fits [35]. Table4 tabulates the total Bayesian error. These

small error values show that the spatially resolved pharmacokinetics-rate analysis provide good sensitivity
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and specificity for diagnosis. One other advantage of the pharmacokinetic-rate images is that they allow

comparison of rates obtained from healthy and tumor tissue for the patient itself since absolute (mean)

values may be quite different from patient to patient. For example, thekin rate for Case 3 obtained

outside the tumor region is higher than thekin rate for Case 1 obtained inside the tumor. Thus, using the

pharmacokinetic-rates obtained from healthy tissue as a reference to the tumor tissue for the same patient

can improve diagnostic accuracy. However, very high mean values ofkin andkout may be indicative of

the severity of malignancy. The pharmacokinetic rates are higher for Case 3 (invasive ductal carcinoma),

for both inside and outside the tumor region as compared to Case 2 (adenocarcinoma). Similarly, the

kinetic rates are higher for Case 2 (adenocarcinoma), as compared to Case 1 (fibroadenoma) for both

inside and outside the tumor region.

To further understand the value of spatially resolved pharmacokinetic-rate analysis as compared to

the bulk pharmacokinetic-rates, we averaged the concentration images spatially, and obtained a bulk

concentration value for each time instant. We then extracted a time curve for the bulk ICG concentrations.

Figure 7 shows the resulting bulk ICG concentration time curves for each case. Next, we fitted the two-

compartment model to the resulting time curves and estimated the bulk pharmacokinetic-rates. Table 5

tabulates the bulk pharmacokinetic-rates for each patient. In Figure 20 and 21, the bulk pharmacokinetic-

rates are overlaid on the histograms of the pharmacokinetic-rate images obtained from inside and outside

the tumor region. Figures 20 and 21 show the Bayesian minimum error classifier threshold (the value

corresponding to the intersection of the histograms) for each case. We see that for Case 1, the bulk

rates ofkin, andkout are both classified as healthy tissue (outside the tumor region). For Case 2,kin is

classified as cancerous tissue (inside the tumor region) andkout is classified as healthy tissue. Similarly

for Case 3,kin is classified as healthy andkout is classified as cancerous tissue. Clearly, the bulk rates

do not provide consistent diagnosis. On the other hand, spatially resolved pharmacokinetic-rates allow us

to compare values from the cancerous region to the healthy background, and provide higher sensitivity,

and specificity as shown by the Bayesian total error values in Table IV.

V. CONCLUSION

In this study, we presented a method of forming pharmacokinetic-rate images and reported spatially

resolved pharmacokinetic-rates of ICG for three breast cancer patients. To form pharmacokinetic-rate

images, we first obtained a sequence of ICG concentration images using the differential diffuse optical to-
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mographic technique. We next employed the two-compartmentmodel, and estimated the pharmacokinetic-

rates and concentrations in each compartment for each voxelusing the EKF framework. We have shown

in our prior work [10] that the EKF framework has a number of advantages in pharmacokinetic-rate

estimation, some of which include robust estimation in the presence of measurement noise and dynamic

model uncertainties.

The reconstruction of the pharmacokinetic-rate images presented in this work were obtained in separate,

decoupled steps. The quantitative accuracy of pharmacokinetic-rate images can be improved by coupling

the two reconstruction steps which can better capture the temporal and spatial variations in the ICG

concentrations and pharmacokinetic-rates and provide robust reconstruction by eliminating outliers. Such

a direct reconstruction technique is currently being developed in our laboratory and will be reported in

the near future.

We formed the pharmacokinetic-rate images using thein vivo data obtained from three breast can-

cer patients and studied the value of spatially resolved pharmacokinetic-rates. A clear advantage of

pharmacokinetic-rate images is that they allow comparisonof the features obtained form the tumor region

to the ones obtained from the healthy background for the samepatient. This within patient comparison is

important because, pharmacokinetic-rates for healthy tissue may be significantly different from patient to

patient. Furthermore, spatially resolved images allow us toutilize not only the average rates but also other

features related to the geometry of the heterogeneity, and higher order statistics of the pharmacokinetic-

rates. The total error for the Bayesian minimum error classifier for all three patients indicates that

the pharmacokinetic-rate images can provide high sensitivity and specificity for tumor diagnosis. The

comparison of the bulk pharmacokinetic-rates to Bayesian minimum error classifier threshold shows that

the diagnostic information provided by the bulk pharmacokinetic-rates is not consistent. Our study shows

that the spatially resolved pharmacokinetic-rate analysis is superior to the bulk pharmacokinetic-rates

in tumor diagnosis. Our study also indicates that similar results may also hold for tumor staging and

treatment monitoring.
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TABLE I

EKF ALGORITHM FOR SIMULTANEOUS ESTIMATION OF STATES AND PARAMETERS.

Initial Conditions

24Ĉd(0)

θ̂(0)

35 =

24E(Cd(0))

θ̂(0)

35 , P0,0 =

24V ar(Cd(0)) 0

0 Sd

35
State Estimate Propagation

24Ĉd(k|k − 1)

θ̂(k|k − 1)

35 =

24Kd(θ̂(k − 1))Ĉd(k − 1)

θ̂(k − 1)

35
Error Covariance Propagation Pk,k−1 = Jk−1Pk−1,k−1JT

k−1 +

24Qd 0

0 Sd

35
State Estimate Update

24Ĉd(k)

θ̂(k)

35 =

24Ĉd(k|k − 1)

θ̂(k|k − 1)

35
+Gk(m(k) − Vd(θ(k|k − 1))Cd(k|k − 1))

Error Covariance Update Pk,k = [I − HkΛk|k−1]Pk,k−1

Kalman Gain Hk = Pk,k−1Λ
T
k|k−1[Λk|k−1Pk,k−1Λ

T
k|k−1 + Rd]−1

Definitions Jk =

24Kd(θ̂(k)) ∂

∂θ
[Kd(θ̂(k))Ĉd(k)]

0 I

35 Λk|k−1 =

24Vd(θ(k|k − 1))

0

35T
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TABLE II

TUMOR INFORMATION FOR EACH PATIENT

Tumor Type Tumor Size Tumor Location

Case 1 Fibroadenoma 1-2 cm 6-7 o‘clock

Case 2 Adenocarcinoma 2-3 cm 4-5 o‘clock

Case 3 Invasive Ductal Carcinoma 4 by 3 cm 6 o‘clock

TABLE III

MEAN AND STANDARD DEVIATION OF PHARMACOKINETIC-RATES FOR INSIDE AND OUTSIDE THE TUMOR REGION

kin (sec−110−2) kout (sec−110−2) kelm (sec−110−3)

Inside Outside Inside Outside Inside Outside

Case 1 2.14±0.018 0.73±0.011 1.24±0.069 0.43±0.013 4.11±0.057 3.87±0.012

Case 2 2.92±0.076 1.14±0.052 1.58±0.051 0.65±0.036 3.94±0.081 4.12±0.047

Case 3 6.87±0.093 3.06±0.015 4.96±0.048 1.66±0.072 4.49±0.056 4.46±0.081

TABLE IV

TOTAL ERROR (PROBABILITY OF FALSE POSITIVE AND FALSE NEGATIVE) IN TUMOR DIAGNOSIS BASED ON BAYESIAN

MINIMUM ERROR CLASSIFIER

Total Error forkin Total Error forkout

Case 1 6.67× 10−2 13.34× 10−2

Case 2 3.23× 10−2 13.51× 10−2

Case 3 9.09× 10−2 3.64× 10−2

TABLE V

BULK PHARMACOKINETIC-RATES EXTRACTED FROM THE ENTIRE BREAST TISSUE

kin (sec−110−2) kout (sec−110−2) kelm (sec−110−1)

Case 1 0.84±0.013 0.62±0.017 3.66±0.042

Case 2 2.01±0.022 0.83±0.012 4.01±0.054

Case 3 4.06±0.072 3.36±0.051 4.37±0.052
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Figure Captions

Fig. 1. Block diagram of the two-compartment model for ICG pharmacokinetics.

Fig. 2. (Left) schematic diagram, (Right) the cut section of the CW NIR imaging apparatus with 16

sources and detectors.

Fig. 3. ICG concentration images for a set of time instants for Case 1.

Fig. 4. ICG concentration images for a set of time instants for Case 2.

Fig. 5. ICG concentration images for a set of time instants for Case 3.

Fig. 6. Time course of ICG concentration curves for a specific voxel, 65th, 276th, 188th voxel for Case

1, Case 2, and Case 3, respectively.

Fig. 7. Averaged time course of ICG concentration curves for Case 1,Case 2, and Case 3, respectively.

Fig. 8. Pharmacokinetic-rate images, (a)kin, and (b)kout for Case 1.

Fig. 9. Pharmacokinetic-rate images, (a)kin, and (b)kout for Case 2.

Fig. 10. Pharmacokinetic-rate images, (a)kin, and (b)kout for Case 3.

Fig. 11. ICG concentration images in plasma for Case 1 for (a)246.4th, (b) 334.4th, and (c)422.4th

seconds.

Fig. 12. ICG concentration images in the EES for Case 1 for (a)246.4th, (b) 334.4th, and (c)422.4th

seconds.

Fig. 13. ICG concentration images in plasma for Case 2 for (a)228.8th, (b) 316.8th, and (c)404.8th

seconds.

Fig. 14. ICG concentration images in the EES for Case 2 for (a)228.8th, (b) 316.8th, and (c)404.8th

seconds.

Fig. 15. ICG concentration images in the plasma for Case 3 for (a)246.4th, (b) 378.4th, and (c)510.4th

seconds.

Fig. 16. ICG concentration images in the EES for Case 3 for (a)246.4th, (b) 378.4th, and (c)510.4th

seconds.

Fig. 17. The kin images with approximate tumor location and size for (a) Case1, (b) Case 2, and (c)

Case 3, respectively. An ellipse/circle identifies the approximate location, and size of the tumor.

Fig. 18. The histograms ofkin for (a) Case 1, (b) Case 2, (c), Case 3 from inside (blue) and outside

(gray) the tumor region (as indicated by circular/elliptical regions). The solid lines in figures show the

Gaussian fit.
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Fig. 19. The histograms ofkout for (a) Case 1, (b) Case 2, (c), Case 3 from inside (blue) and outside

(gray) the tumor region (as indicated by circular/elliptical regions). The solid lines in figures show the

Gaussian fit.

Fig. 20. Solid line (blue) shows bulkkin rates for (a) Case 1, (b) Case 2, (c), Case 3 together with the

histogram fits. The dashed (red) line indicates the Bayesian minimum error classifier threshold.

Fig. 21. Solid line (blue) shows bulkkout rates for (a) Case 1, (b) Case 2, (c), Case 3 together with the

histogram fits. The dashed (red) line indicates the Bayesian minimum error classifier threshold.
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Abstract— This work describes the characterization efficiency
of optical properties of breast tumors based on the features
obtained using in vivo near-infrared (NIR) spectroscopy mea-
surements. Three features, relative blood concentration, oxygen
saturation and the size of the tumor, are used to diagnose benign
and malignant tumors. The performance of the proposed set of
features are evaluated by various classifiers using data acquired
from 44 patients with malignant tumors, and 72 patients with
benign tumors. The area under the receiver operating character-
istics (ROC) curve of the scaled nearest mean classifier (NMSC)
using the three features yields a value of 0.91 with a significance
level of 0.05. Our results suggest that the features, relative blood
concentration, and oxygen saturation can differentiate breast
tumors with a relatively high precision.

I. I NTRODUCTION

American cancer society (ACS) estimates that a total of
approximately 200,000 new cases of invasive breast cancer
occur in women in the United States every year [1]. Currently,
there are over 2 million women living in the US who have been
diagnosed with and treated for breast cancer. A total of 40,410
women and 470 men are predicted to die from breast cancer in
the US during the year 2007 as per ACS estimates [1]. Breast
cancer continues to be the leading cancer site among American
women.Early detection is critical for effective treatment of
breast cancer. Patients with tumors 1 cm or less in size have
a greater than 90 percent long-term survival [2].

In recent years, there has been considerable interest in
near-infrared (NIR) optical spectroscopy and tomography tech-
niques since they provide contrast information that is specific
to oxyhemoglobin, deoxyhemoglobin, and water which can
potentially be used forearly detection and diagnosis of breast
cancer [3]–[8].

Correct interpretation of the optical indices (i.e. de-
oxyhemoglobin, oxyhemoglobin, blood volume, water con-
tent, scattering, and absorption) obtained by optical spec-
troscopic/tomographic techniques is also important as well
as acquiring them. Several research groups demonstrated
that the contrast in optical indices can provide information
that allows for better characterization of breast cancer [3]–
[5]. In [3], Pogue et al. presented a way to measure and
obtain hemoglobin concentration, oxygen saturation, water
fraction, scattering power, and scattering amplitude. These
indices were then investigated for the differences between
healthy and diseased breast tissues. In [4], Grosenick et al.

reported on the optical indices, scattering and absorption
coefficients, hemoglobin concentration, and blood oxygen
saturation obtained using optical measurements. Their results
showed that these optical indices can be used to distinguish
carcinomas from healthy breast tissues. Recently, Khayat et
al. [5] presented characterization results of optical indices,
oxyhemoglobin, deoxyhemoglobin, blood volume, lipid and
water content, scattering and absorption coefficients, using
optical imaging. The results showed the ability of optical
imaging to characterize different types of breast lesions.

In this work, we evaluated the characterization efficiency
of optical properties of breast tumors usingin vivo data
obtained by near-infrared (NIR) spectroscopy. Our evaluation
criteria is based on statistical classification techniques. Three
features, namely, relative blood concentration,∆BV , oxygen
saturation,∆Deoxy, and the size of the tumor,S, were used
to characterize benign and malignant tumors. The performance
of the proposed set of features were evaluated using various
classifiers on 44 patients with malignant tumors, and 72
patients with benign tumors. The area under the receiver
operating characteristics (ROC) curve of the scaled nearest
mean classifier (NMSC) using the three features yields a value
of 0.91 with a significance level of 0.05.

The rest of the paper is organized as follows: In Section
II, we present the NIR apparatus, and data protocol, followed
by feature extraction and tumor classification. In Section III,
we present statistical analysis of clinical data. Section IV
summarizes our results.

II. M ETHODS

A. Apparatus

In this study, a continuous wave (CW) near infrared spec-
trometer (NIRS) is used [9]. The apparatus includes a probe
(Fig. 2). In the center of the probe there is a 3-wavelength
light emitting diode (LED). The probe consisted of one multi-
wavelength LED as a light source and 8 silicon diodes as
detectors. The detectors surround the LED with a 4 cm radius.
The light intensity from the detectors was adjusted to be
approximately 1 volt and calibrated with a phantom with
known absorption and scattering coefficients.



Fig. 1. The NIR probe with a multi-wavelength LED and 8 silicon diodes
as detectors.

B. Patients and Protocol

This study includes two centers, namely, the Abramson
Family Cancer Research Institute, Department of Radiology
of the Hospital of University of Pennsylvania (HUP), and the
Department of Gynecology of Leipzig University (DGLU).
HUP provided 24 patients with malignant and 64 patients
benign tumors. DGLU provided 20 patients with malignant
and 6 benign tumors.

The measurements are taken on the breast with tumor. Then,
the probe is transferred to the tumor free contralateral breast to
include the mirror image location of the suspected cancer. The
sensors giving the largest changes with respect to the mirror
image position on the contralateral breast are related to the
suspected cancer.

C. Feature Extraction

In this study, three features, namely, relative blood concen-
tration, ∆BV , oxygen saturation,∆Deoxy, and the size of
the tumor,S, are used.

The features,∆BV , and∆Deoxy are obtained using

∆OD = ε∆CL (1)

whereOD is the optical density,ε is the extinction coefficient,
C is blood concentration,L is the mean pathlength of photons,
and∆ denotes relative change. Here,ε ≈ 1 cm−1, andL = 4
cm for a pathlength factor of 5.

Following (1), the relative blood concentration,∆BV , and
the oxygen saturation,∆Deoxy, can be approximated at two
different wavelengths by

∆BV ∝ 0.3∆OD730 + ∆OD850 (2)

∆Deoxy ∝ 1.3∆OD730 + ∆OD850 (3)

where∆OD730, and∆OD850 denote the relative changes in
optical density at 730 nm and 850 nm, respectively.

∆BV and∆Deoxy can also be approximated by

∆BV ∝ ∆[Hb] + ∆[HbO2] (4)

∆Deoxy ∝ ∆[HbO2]−∆[Hb] (5)

where ∆[Hb], and ∆[HbO2] denote the relative change in
deoxyhemoglobin (Hb) and oxyhemoglobin (Hb02).

The concentrations of Hb, and HbO2 in (4) and (5) are
calculated by the Beer-Lambert Law given by

∆OD = log
I0

I
(6)

whereI is light intensity after absorption and scattering, and
I0 is the baseline light intensity obtained from the contralateral
breast, using known extinction coefficients of Hb, HbO2 and
differential pathlength factors [10].

Here, it is important to note that,∆BV , and ∆Deoxy
values are based on a lipid blood oxygen model. Thus the
increments ofBV andDeoxy are relative to the contralateral
breast:

∆BV = ∆BVtumor −∆BVcontra (7)

∆Deoxy = ∆Deoxytumor −∆Deoxycontra (8)

where∆BVtumor, ∆BVcontra are relative blood volume in the
tumor breast and the mirror image position of the contralateral
breast, respectively, and∆Deoxytumor, ∆Deoxycontra are
relative oxygen saturation in the tumor breast and the mirror
image position of the contralateral breast, respectively.

D. Feature Analysis and Tumor Classification

In this subsection, we present the set of tumor classifi-
cation features, and the malignancy differentiation criteria.
F1 denotes∆BV , F2 denotes∆Deoxy, and F3 denotes,S,
size of the tumor. We evaluate the malignancy differentiation
capability of the individual features and various combinations
of the these features using a set of classifiers, namely, k-nearest
neighbor classifier (KNNC), Parzen density based classifier
(PAR), automatic neural network classifier (NEURC), normal
densities based linear classifier (LDC), nearest mean classifier
(NMC), scaled nearest mean classifier (NMSC), normal den-
sities based quadratic classifier (QDC), uncorrelated normal
densities based quadratic classifier (UDC). The more details
information on these classifiers can be found in [12].

We evaluated the malignancy differentiation capability of
the following individual and combined features:
F1: ∆BV
F2 : ∆Deoxy
F3 : Tumor Size (S)
F1-F2:∆BV and∆Deoxy
F1-F2-F3:∆BV , ∆Deoxy, andS

III. STATISTICAL ANALYSIS OF CLINICAL DATA

The evaluation is based on receiver operating characteristics
(ROC) methodology. The ROC curve is obtained by plotting
the probability of false positive rate versus the probability
of detection. The evaluation of classification method is done
using area under the ROC curve (AUC). First, we evaluated the
classification performance of all three features. Table I presents
the AUC values for 8 different classifiers for all three features.
The NMSC has the best performance in terms of classification
with a AUC value of 0.9098 followed by the Parzen classifier
with a AUC value of 0.9041.



TABLE I
AUC VALUES FOR DIFFERENT CLASSIFIERS FORF1-F2-F3:∆BV , ∆Deoxy, S

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC
AUC 0.9098 0.9041 0.9017 0.8984 0.8864 0.8843 0.8807 0.8752

TABLE II
AUC VALUES FOR DIFFERENT CLASSIFIERS FORF1-F2:∆BV , ∆Deoxy

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC
AUC 0.9001 0.8993 0.8930 0.8908 0.8992 0.8821 0.8782 0.8645
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Fig. 2. Scaled Nearest Mean Classifier and F1-F2 2-D data clustering.

Next, we evaluated the performance of the two features mea-
sured by NIR spectroscopy. Table II presents the AUC values
for 8 different classifiers for features∆BV and ∆Deoxy.
Again, the NMSC performed the best in terms of classification
with a AUC value of 0.9001. Finally, we evaluated the
individual classification performances of the three features.
Table III presents the AUC values for 8 different classifiers
for the feature∆BV . The NMC has the best performance
in terms of classification with a AUC value of 0.8832. Table
IV presents the results 8 different classifiers for the feature
∆Deoxy. The NMC has the best performance in terms of
classification with a AUC value of 0.879. Table V presents
the results 8 different classifiers for the featureS. The QDC
has the best performance in terms of classification with a AUC
value of 0.5612.

As it can be seen from Tables I, and II, the best performing
feature set is the combination of the three features. We can
also conclude from Table V that, the tumor size can not be
used to differentiate healthy and diseased tissues with an AUC
value of around 0.5. However, the combination set of optical
indices, obtained using optical measurements, can differentiate
breast tumors with a relatively high precision with a AUC
value of 0.9. Similarly, optical indices,∆BV and ∆Deoxy,
also performed well with AUC values of 0.883 and 0.879,
respectively.
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Fig. 3. Parzen and F1-F2 2-D data clustering.

Figures 2, and 3 show the distribution of features∆BV , and
∆Deoxy extracted from benign and malignant tumors. The
thresholds were computed using scaled nearest mean classifier
and Parzen classifiers. Figure 4 presents, the ROC curves for
all three features, and the best two features, namely,∆Deoxy
and ∆BV . The observed area under the ROC curve for F1-
F2-F3, and F1-F2 are 0.9098, and 0.9001, respectively. Figure
5 presents the ROC curves for individual features F1, and F2
using the nearest mean classifier. The observed area under the
ROC curve for F1, and F2 are 0.8832 and 0.8790, respectively.

IV. CONCLUSION

In this work, we evaluated the characterization efficiency
NIR optical spectroscopy using three features, relative blood
concentration, oxygen saturation, and the size of the tumor.
The characterization of malignant and benign tumors are
evaluated using different classifiers. Our results suggest that
the relative blood concentration, and oxygen saturation has
potential to differentiate malignant and benign breast tumors
with a relatively high accuracy. This set of features can
potentially be incorporated into a diagnostic systems to aid
physicians for breast cancer diagnosis. In the near future, we
will incorporate additional features to the current feature set.
We plan to analyze the new set of features using different



TABLE III
AUC VALUES FOR DIFFERENT CLASSIFIERS FORF1: ∆BV

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC
AUC 0.8817 0.8764 0.8807 0.8779 0.8513 0.87780.8832 0.8302

TABLE IV
AUC VALUES FOR DIFFERENT CLASSIFIERS FORF2: ∆Deoxy

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC
AUC 0.8787 0.8764 0.8776 0.8711 0.8491 0.86130.8790 0.8331

TABLE V
AUC VALUES FOR DIFFERENT CLASSIFIERS FORF3: S

Type NMSC PAR LDC UDC NEURC QDC NMC KNNC
AUC 0.5123 0.5292 0.4782 0.5429 0.5382 0.5612 0.5112 0.4827
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Fig. 4. ROC curves for F1-F2-F3 and F1-F2 using NMSC Classifier.
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Fig. 5. ROC curves for F1and F2 using NMC Classifier.

sampling techniques, i.e. hold-out, leave-one-out, resubstitu-
tion techniques, and further investigate the characterization
efficiency optical features. We also plan to compare the ROC
performance of the optical features, F1 and F2, with that of F3,
using a hypothesis testing method based on the AUC statistics.
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Abstract— In this work, we propose a method to reconstruct
spatially resolved pharmacokinetic rate images of fluorescence
agents directly from the boundary photon flux measurements.
We use a compartmental modeling scheme to model the phar-
macokinetics of fluorescence agents. We coupled this model with
the fluorescence diffuse optical tomography (FDOT) forward
model to form a state space model which is then iteratively
solved by extended Kalman filtering (EKF) algorithm. As an
example, we used a two-compartment model for indocyanine
green (ICG) pharmacokinetics. To validate the proposed method,
we tested our approach using a simulation study. Reconstructed
pharmacokinetic rate images with correct localization of het-
erogeneities and high reconstruction accuracy show that the
proposed algorithm can be used for tumor detection, tumor
diagnosis, drug delivery and feasibility studies.

I. INTRODUCTION

Development of  uorescence agents that emit light upon
excitation lead to a new imaging technique, called  uorescence
diffuse optical tomography (FDOT), whose theory is a straight-
forward extension of diffuse optical tomography. In FDOT,
near infrared (NIR) excitable exogenous  uorescence agents,
which are externally injected into the tissue are investigated
in terms of their optical parameters [1]. These agents enhance
the sensitivity of detection hence increase the optical contrast.
FDOT has the ability to characterize functional parameters of
tissue such as scattering and absorption, which can be used to
derive pharmacokinetics of  uorescence agents.

The analysis of pharmacokinetics of  uorescence agents
is a potential means for tumor detection, diagnosis, drug
delivery and feasibility studies [2]. One approach to phar-
macokinetic analysis is the compartmental modeling [6]. In
this method, a region of interest consists of a number of
compartments, generally representing a volume of similar
tissues into which the  uorescence agent is distributed. The
concentration changes in a speci c compartment are modeled
as a result of the exchange of  uorescence agents between
connected compartments. These changes are modeled by a
collection of coupled ordinary differential equations (ODE);
each equation describing the time change dictated by the bio-
logical laws that govern the concentration exchanges between
the interacting compartments. Coef cients of the ODE’s are

the pharmacokinetic rates that represent rates of exchange
between different compartments.

A number of research groups reported compartmental mod-
eling of  uorescence agents for tumor diagnosis in animal
and human subjects [3]–[5]. In these studies, bulk values
that represent pharmacokinetic rates either over the entire
imaging domain or a large volume is used for tumor de-
tection/diagnosis. In such cases, spatially resolved represen-
tation of pharmacokinetic rates may increase speci city and
sensitivity compared to average bulk rates. Moreover, there
are studies in literature showing that the spatially varying
pharmacokinetics rates are quantitatively different inside and
outside the tumor region [7]–[9].

In this paper, we proposed a compartmental modeling
scheme for  uorescence agent pharmacokinetics, and recon-
structed spatially resolved pharmacokinetic rate images di-
rectly from the boundary photon  ux measurements. We
also reconstructed the spatially resolved  uorescence agent
concentration images inside different compartments. In our
algorithm, we used a  nite element method (FEM) [10] as a
forward solver and an extended Kalman  lter (EKF) algorithm
[3] as an inverse solver. We tested our approach using a
simulated data set based on a two-compartment model for ICG
pharmacokinetics. For the simulation studies, we generated
a set of time series data from a domain with tissue-like
characteristics using FEM algorithm to solve the coupled
diffusion equations with Robin type boundary conditions. Re-
constructed pharmacokinetic images with correct localization
of heterogeneities and high reconstruction accuracy show that
the proposed algorithm can be useful for tumor diagnosis, drug
delivery and feasibility studies.

The rest of the paper is organized as follows: In Section
II, we present pharmacokinetic analysis and compartmental
modeling for  uorescence agents. In Section III, we present
FDOT forward problem. Section IV describes the inverse
problem and the EKF algorithm for direct reconstruction of
pharmacokinetic parameters. In Section V, we present the
simulation results. Section VI summarizes our results and
conclusion.



II. PHARMACOKINETIC MODELING AND
COMPARTMENTAL MODEL ANALYSIS

In general, the continuous time state-space representation
for an n-compartment model is given by

Ċ(t) = K(αn)C(t) (1)

m(t) = V(αn)C(t) (2)

where C(t) denotes the concentration vector whose elements
are the concentrations of the  uorescence agents in different
compartments, and Ċ(t) denotes its time derivative. m(t) is
the bulk  uorescence concentration, n is the number of com-
partments, αn is the parameter vector whose elements are the
pharmacokinetic rate constants and volume fractions. K(αn)
is the system matrix with entries being the pharmacokinetic
rates, and V(αn) is the vector containing the volume fractions
[6].

Although the formulation for the direct reconstruction
of pharmacokinetic rate images can be applicable for n-
compartment models, here the two-compartment model for
ICG pharmacokinetics will be our running example [3], [4].
Based on a two-compartment model for ICG kinetics, as
shown in Figure 1, the ICG transition between two compart-
ments can be modeled by two coupled differential equations:

dCe(t)
dt

= −koutCe(t) + kinCp(t), (3)

dCp(t)
dt

= −(kin + kelm)Cp(t) + koutCe(t). (4)

Here, C(t) in (1) and (2) includes, Cp(t) and Ce(t), repre-
senting the ICG concentrations in the plasma and extracellular
extravascular space (EES), respectively. The parameter vector,
α2, includes, kin, kout, kelm, vp, and ve,;

α2 = [kin kout kelm vp ve]T , (5)

where kin and kout are the pharmacokinetic rates that govern
the leakage into and the drainage out of the EES, kelm

describes the ICG elimination from the body through kidneys
and livers, and vp and ve are the plasma and EES volume
fractions, respectively.

Capillary
Cp, vp kelm

kin kout
�

�

�

EES
Ce, ve

Fig. 1. Block diagram of the two-compartment model for ICG pharmacoki-
netics.

Here, to obtain 2-D images of pharmacokinetic rates and
 uorescence agent concentrations in different compartments,

we extend the compartmental model equations (1) and (2) to
spatially resolved model as follows:⎡
⎢⎣

Ċ(r1, t)
...

Ċ(rN , t)

⎤
⎥⎦=

⎡
⎢⎣

K(αn(r1)) 0 0

0
. . . 0

0 0 K(αn(rN ))

⎤
⎥⎦
⎡
⎢⎣

C(r1, t)
...

C(rN , t)

⎤
⎥⎦

+ ω(r, t) (6)

where ω(r, t) is uncorrelated zero mean Gaussian processes
with covariance matrix Q, representing the small deviations
resulting from model mismatch. r = [r1 r2....rN ], and rj is
the location of the jth voxel for j = 1, 2, 3...N , N being the
number of total voxels in the discritized domain.⎡
⎢⎣

m(r1, t)
...

m(rN , t)

⎤
⎥⎦=

⎡
⎢⎣

V(αn(r1)) 0 0

0
. . . 0

0 0 V(αn(rN ))

⎤
⎥⎦
⎡
⎢⎣

C(r1, t)
...

C(rN , t)

⎤
⎥⎦

+ η(r, t) (7)

where η(r, t) is a zero mean Gaussian process with covariance
matrix R presenting the noise in the measurements.

The implicit form of (6) and (7) are given by:

Ċ(r, t) = K(αn(r))C(r, t) + ω(r, t) (8)

m(r, t) = V(αn(r))C(r, t) + η(r, t) (9)

The quantity we wish to reconstruct is the spatially varying
pharmacokinetic rate parameters instead of the absorption
coef cient of the  orescence agents as commonly the case in
FDOT [1]. To do this, we  rst need to develop a mapping
which relates the boundary  ux measurements to the bulk
 orescence agent concentrations in tissue. This mapping can
be obtained by using FDOT forward model which will be
explained in the next section.

III. FLUORESCENCE DIFFUSE OPTICAL TOMOGRAPHY

We used a coupled system of diffusion equations to model
 uorescence light propagation in tissue [1]. Based on the
coupled diffusion equations, the forward model for FDOT can
be expressed as:

Ψ(r, t) = f(µaf (r, t)), (10)

where µaf (r, t) = [µaf (r1, t), · · · , µaf (rN , t)] is the time
dependent absorption coef cient of the  uorescence agent,
Ψ(r, t) = [Ψ(r1, t), · · · ,Ψ(rN , t)] is the time-dependent
boundary  ux measurements, and f is a nonlinear function
de ned by the coupled diffusion equation. Under the assump-
tion that the exogenous optical properties has no effect on
endogenous optical properties, (10) can be linearized to obtain

Ψ(r, t) = Wµaf (r, t), (11)

where W is the weight matrix which maps the absorption
coef cients to the boundary measurements obtained using the
FEM algorithm [10].

The absorption coef cient of the  uorescence agents is
related to the bulk  uorescence agent concentration as follows:

µaf (r, t) = εm(r, t) (12)



where ε is the extinction coef cient of the  uorescence agent
at the excitation wavelength.

A. Pharmacokinetic Rate to Measurement Map for Fluores-
cence Agents

To derive a complete formulation to reconstruct the phar-
macokinetic parameters and concentrations in different com-
partments using the photon  ux measurements, we combined
the FDOT forward problem equations, (10) or (11) with the
compartmental model equations.

Combining (9) and (10), with the knowledge of the linear
relationship between the absorption coef cient and the bulk
 uorescence concentration, (12), nonlinear FDOT forward
problem is related to the bulk  uorescence agent concentration
as:

Ψ(r, t) = g(m(r, t)) ∼ g(V(αn(r))C(r, t)) (13)

where g is the non-linear function which relates the bulk
 uorescence agent concentrations to the boundary  ux mea-
surements.

The linearized version of (11) is given as:

Ψ(r, t) = εWm(r, t)
= εWV(αn(r))C(r, t) + εWη(r, t)
= ΓC(r, t) + εWη(r, t), (14)

where W, V and η(r, t) are de ned as above and Γ =
εWV(αn(r)).

The equations (8) and (13), which combine the FDOT
forward problem with the compartment model equations con-
stitute the set of equations which will be used for the direct
reconstruction of pharmacokinetic rates, volume fractions, and
 uorescence concentrations in different compartments.

IV. DIRECT RECONSTRUCTION OF PHARMACOKINETIC
RATE AND CONCENTRATION IMAGES FROM OPTICAL

FLUX MEASUREMENTS

The source detector measurements in (9) are collected at
discrete time instances, t = kT , k = 0, 1, ..., where T is the
sampling period. Therefore, the continuous model described
in (8) and (14) has to be discretized. To simplify our notation,
we shall use C(r, k) = C(r, kT ) and Ψ(r, k) = Ψ(r, kT ).

Let θn denote the discrete-time parameter vector of the
pharmacokinetic rates and volume fractions. The parameter
vector θn(r) can be either time dependent or time independent.
The formulation given in this work can be used for both
cases. In our case, the pharmacokinetic rates and the volume
fractions are time independent. However, in order to estimate
θn within the EKF framework, the following dynamic model
is introduced:

θn(r, k + 1) = θn(r, k) + ς(r, k), (15)

where ς(r, k) is a zero mean white noise process with covari-
ance matrix S. The details of the dynamic model introduced
for the joint estimation of the system parameters and the states
can be found in [3].

1) A priori information for Pharmacokinetic Rates and
Volume Fractions: To improve the robustness of estimates of
the parameters, we impose a priori information on pharma-
cokinetic parameters and volume fractions. Here, we assume
that there is no information about the tumor structure and used
a 4-pixel neighborhood model.

Using the 4-pixel neighbor model with equal weights β, the
random process, θn(r, k), can be modeled as:

θn(rj , k+1) = βθn(rj , k)+β
4∑

i=1

θn(rji, k)+ς(r, k). (16)

2) Extended Kalman Filter (EKF) Formulation: In our
state-space model, (8) and (9), both the states (concentrations)
and system parameters (pharmacokinetic rates and volume
fractions) are unknown. In this case, the state-space model can
be regarded as a non-linear model in which system parameters
and states are combined to form the new states of the non-
linear model. This system is then linearized and solved for
the unknown states using EKF framework [3]. To solve for
the concentrations and the unknown parameters, the parameter
vector θn(r, k) is inserted into the concentration vector C(r, k)
as:[

C(r, k + 1)
θn(rj , k + 1)

]
=

[
K(θn(r, k))C(r, k)

βθn(rj , k) + β
∑4

i=1 θn(rji, k)

]
+
[

ω(r, k)
ς(r, k)

]
.

(17)
The measurement equation for the non-linear case is given

as:

Ψ(r, k) =
[

g(V(αn(r))C(r, k)) 0
] [

C(r, k)
θn(r, k)

]
+η(r, k).

(18)
Without explicit proof, the extended Kalman  ltering al-

gorithm for simultaneous estimation of concentrations and
parameters for the nonlinear case, (13), is given follows:[

Ĉ(r, 0)
θ̂n(r, 0)

]
=

[
E(C(r, 0))
θ̂n(r, 0)

]
. (19)

P0,0 =
[

V ar(C(r, 0)) 0
0 Sd

]
, (20)

where E denotes the expected value of C(r, 0), P is the error
covariance matrix, and Sd is the preassigned covariance matrix
of the unknown system parameters.

The following equations describe how the concentration
estimates and error covariance matrix are updated at the kth

time instant given all the measurements up to (k − 1)th time
instant. For k = 1, 2, ...,[

Ĉ(r, k|k − 1)
θ̂n(rj , k|k − 1)

]
=

[
K(θ̂n(r, k − 1))Ĉ(r, k − 1)

βθ̂n(rj , k − 1) + β
∑4

i=1 θ̂n(rji, k)

]

(21)
Pk|k−1 = J(k − 1)Pk−1,k−1JT (k − 1) +

[
Qd 0
0 Sd

]
, (22)

where J is the Jacobian matrix given by

J(k) =

[
K(θ̂n(r, k)) ∂

∂θ
[K(θ̂n(r, k))Ĉ(r, k)]

∂

∂C θ̂n(r, k) ∂

∂
ˆθ n

θ̂n(r, k)

]
. (23)



Gk = Pk,k−1ΛT [ΛPk,k−1ΛT + R]−1, (24)

where Gk is the recursive Kalman gain, R is the covariance
matrix of the measurements and Λ is:

Λ =

⎡
⎢⎣

∂

∂Cg(V(θn(r, k|k − 1)C(r, k|k − 1))
.

∂

∂θ

(
∂

∂Cg(V(θn(r, k|k − 1)C(r, k|k − 1)
)

⎤
⎥⎦

T

, (25)

Pk,k = [I − GkΛ]Pk,k−1. (26)

where I is the identity matrix.[
Ĉ(r, k)

θ̂n(rj , k)

]
=
[

Ĉ(r, k|k − 1)
βθ̂n(rj , k|k − 1) + β

∑4
i=1 θ̂n(rji, k|k − 1)

]

+Gk(Ψ(r, k) − g(V(θn(r, k|k − 1)C(r, k|k − 1)).

V. SIMULATIONS AND RESULTS

To validate our approach, we performed a simulation study
based on the two-compartment model proposed for ICG. Using
physiologically correct values for pharmacokinetic rates, kin,
kout, kelm, and volume fractions, ve, vp, around the tumor
region, a set of time series data, Ψ(r, t), was generated
from a simulated domain with tissue-like characteristics. To
generate the synthetic measurements, the diffusion equation
was solved numerically using FEM algorithm with Robin type
boundary conditions [10]. The simulation used a modulation
frequency 300 MHz. The phantom is 6cm by 6cm in size, and
it is discretized into 24 by 24 voxels each of size 0.25cm
by 0.25cm. The 24 sources and 24 detectors are arranged
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Fig. 2. Pharmacokinetic rate images of kin : (a) true, and (b) reconstructed.
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Fig. 3. Pharmacokinetic rate images of kout : (a) true, and (b) reconstructed.

throughout the boundary sequentially. The maximum transition
rates of kin and kout are simulated at the center of the image
of size 1cm by 1cm and smoothly decreased towards the

boundaries. Figures 2a and 3a display the true images of
pharmacokinetic rates kin and kout. Figures 2b and 3b display
the corresponding reconstructed images. We observe that there
is a good agreement between the true and the estimated images
in terms of localization of the heterogeneities. We calculated
the percent error between the true images and the reconstructed
images by the ratio of the L2 norm of the error and the L2

norm of the true image. The percent error for kin and kout

are 11.95 % and 13.11 %, respectively.

VI. CONCLUSION

In this paper, we provided a formulation for the recon-
struction of spatially resolved pharmacokinetic rate images
of  uorescence agents directly from the boundary photon
 ux measurements. We performed a simulation study using
a numerical phantom. Reconstructed images with small errors
show that the algorithm can be used for real data analysis. In
the near feature, we plan to apply the proposed algorithm to
the ICG concentration data acquired from breast tumors.
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Abstract
In diffuse optical tomography (DOT), the discretization error in the numerical
solutions of the forward and inverse problems results in error in the
reconstructed optical images. In this first part of our work, we analyse the error
in the reconstructed optical absorption images, resulting from the discretization
of the forward and inverse problems. Our analysis identifies several factors
which influence the extent to which the discretization impacts on the accuracy of
the reconstructed images. For example, the mutual dependence of the forward
and inverse problems, the number of sources and detectors, their configuration
and their orientation with respect to optical absorptive heterogeneities, and the
formulation of the inverse problem. As a result, our error analysis shows that
the discretization of one problem cannot be considered independent of the other
problem. While our analysis focuses specifically on the discretization error in
DOT, the approach can be extended to quantify other error sources in DOT and
other inverse parameter estimation problems.

1. Introduction

Imaging in diffuse optical tomography (DOT) comprises two interdependent stages which
seek solutions to the forward and inverse problems. The forward problem is associated with
describing the near-infrared (NIR) light propagation, while the objective of the inverse problem
is to estimate the unknown optical parameters from boundary measurements [2].

There are a variety of factors that affect the accuracy of the DOT imaging, such as
model mismatch (due to the light propagation model and/or linearization of the inverse
problem), measurement noise, discretization, numerical algorithm efficiency and inverse
problem formulation. In this two-part study, we focus on the effect of discretization of the
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forward and inverse problems. In the first part of our work, we present an error analysis to show
the effect of discretization on the accuracy of the reconstructed optical absorption images. We
identify the factors specific to the imaging problem, which determine the extent to which the
discretization impacts on the accuracy of the reconstructed optical absorption images. In the
following, first, we use the error analysis to develop novel adaptive discretization algorithms
for the forward and inverse problems to reduce the error in the reconstructed optical images
resulting from discretization. Next, we present numerical experiments that support the main
results of part I and demonstrate the effectiveness of the developed adaptive mesh generation
algorithms.

There has been extensive research on the estimation of discretization error in the solutions
of partial differential equations (PDEs) [1, 5–7, 21, 22]. In contrast, relatively little has been
published in the area of parameter estimation problems governed by PDEs. See for example
[8] for an a posteriori error estimate for the Lagrangian in the inverse scattering problem
for the time-dependent acoustic wave equation and [19] for a posteriori error estimates for
distributed elliptic optimal control problems. In the area of DOT, it was numerically shown
that the approximation errors resulting from the discretization of the forward problem can lead
to significant errors in the reconstructed optical images [3]. However, an analysis regarding
the error in the reconstructed optical images resulting from discretization has not been reported
so far.

In this work, we model the forward problem by the frequency-domain diffusion equation.
For the inverse problem, we focus on the estimation of the absorption coefficient. We consider
the linear integral equation resulting from the iterative linearization of the inverse problem
based on Born approximation and use zeroth-order Tikhonov regularization to address the
illposedness of the resulting integral equation. We use finite elements with first-order Lagrange
basis functions to discretize the forward and inverse problems and analyse the effect of the
discretization of each problem on the reconstructed optical absorption image. Our analysis
describes the dependence of the image quality on the optical image properties, the configuration
of the source and detectors, the orientation of the source and detectors with respect to absorptive
heterogeneities, and on the regularization parameter in addition to the discretization error in the
solution of each problem. In our analysis, we first consider the impact of the inverse problem
discretization when there is no discretization error in the solution of the forward problem, and
provide a bound for the resulting error in the reconstructed optical image. Next, we analyse
the effect of the forward problem discretization on the accuracy of the reconstructed image
without discretizing the inverse problem, and obtain another bound for the resulting error in
the reconstructed optical image. We see that each error bound comprises the discretization
error in the corresponding problem solution, scaled spatially by the solutions of both problems.
This is a direct consequence of the fact that the inverse problem solution depends on the model
defined by the forward problem. As a result, the error analysis yields specific error estimates
which are different than the conventional discretization error estimates (see equations (3.8)–
(3.9) and (4.14)) which only take into account the smoothness and support of the function of
interest, and the finite-dimensional space of approximating functions [9]. We further discuss
the use of other basis functions and methods in the discretization of the forward and inverse
problems and explain how the error bounds can be modified accordingly. Finally, we extend
our analysis to show the effect of noise on the accuracy of the reconstructed optical images.
Our analysis shows that the presence of noise results in error terms in addition to the error
in the reconstructed optical images induced by the discretization of the forward and inverse
problems.

This work not only provides an insight into the error in reconstructed optical absorption
images resulting from discretization, but also motivates the development of novel adaptive
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mesh generation algorithms to address this error [14]. In addition, the analysis presented in
this work provides a means to identify and analyse the error in the reconstructed optical images
resulting from the linearization of the Lippmann–Schwinger-type equations [10] using Born
approximation [15]. Furthermore, the error analysis introduced in this paper is not limited
to DOT, and can easily be extended for use in similar inverse parameter estimation problems
such as electrical impedance tomography, bioluminescence tomography, optical fluorescence
tomography, microwave imaging etc, in all of which the inverse problem can be interpreted
in terms of a linear integral equation, whose kernel is the solution of a PDE that models the
forward problem.

The outline of this paper is as follows: section 2 defines the forward and inverse problems.
In section 3, we discuss the discretization of the forward and inverse problems. In section 4,
we present two theorems that summarize the impact of discretization on the accuracy of the
reconstructed optical images, which is followed by section 5. The appendices include results
regarding the boundedness and compactness of the linear integral operator used to define the
inverse problem, and the proof for the convergence of the inverse problem discretization.

2. Forward and inverse problems

In this section, we describe the model for NIR light propagation and define the forward and
inverse DOT problems. Table 1 provides a list of the notation and table 2 provides the definition
of function spaces and norms used throughout the paper. We note that we use calligraphic
letters to denote the operators, e.g. Aa, I,K etc.

2.1. Forward problem

We use the following boundary value problem to model the NIR light propagation in a bounded
domain � ⊂ R

3 with Lipschitz boundary ∂� [2, 9]:

−∇ · D(x)∇gj (x) +
(
µa(x) +

iω

c

)
gj (x) = Qj(x) x ∈ �, (2.1)

gj (x) + 2aD(x)
∂gj

∂n
(x) = 0 x ∈ ∂�, (2.2)

where gj (x) is the photon density at x,Qj is the point source located at xj
s , j = 1, . . . , Ns ,

where Ns is the number of sources, D(x) is the diffusion coefficient and µa(x) is the absorption
coefficient at x, i = √−1, ω is the modulation frequency of the source, c is the speed of the
light, a = (1 + R)/(1 − R) where R is a parameter governing the internal reflection at the
boundary ∂�, and ∂ · /∂n denotes the directional derivative along the unit normal vector on
the boundary. Note that we assume the diffusion coefficient is isotropic. For the general
anisotropic material, see [17].

The adjoint problem [2] associated with (2.1)–(2.2) is given by the following boundary
value problem:

−∇ · D(x)∇g∗
i (x) +

(
µa(x) − iω

c

)
g∗

i (x) = 0 x ∈ �, (2.3)

g∗
i (x) + 2aD(x)

∂g∗
i

∂n
(x) = Q∗

i (x) x ∈ ∂�, (2.4)

where Q∗
i is the adjoint source located at xi

d , i = 1, . . . , Nd , where Nd is the number of
detectors. We note that we approximate the point source Qj in (2.1) and the adjoint source
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Table 1. Definition of variables functions, and operators.

Notation Explanation

� Bounded domain in R
3 with Lipschitz boundary

∂� Lipschitz boundary of �

x Position vector in � ∪ ∂�

gj (x) Solution of the diffusion equation at x for the j th

point source located at xj
s

g∗
i (x) Solution of the adjoint problem at x for the ith

adjoint source located at xi
d

Gj (x) Finite-element approximation of gj at x
G∗

i (x) Finite-element approximation of g∗
i at x

ej (x) The discretization error at x in the finite-element
approximation of gj

e∗
i (x) The discretization error at x in the finite-element

approximation of g∗
i

α(x) Small perturbation over the background µa at x
�i,j Differential measurement at the ith detector

due to the j th source
Aa The matrix-valued operator mapping α ∈ L∞(�) to C

Nd×Ns

A∗
a The adjoint of Aa mapping from C

Nd×Ns to L1(�)

Hi,j (x) The kernel in Aa at x for the ith detector and the jth source
H ∗

i,j (x) The kernel in A∗
a at x for the ith detector and the jth source

γ (x) A∗
a� at x

λ The regularization parameter
αλ(x) Solution of the regularized inverse problem at x
αλ

n(x) Solution of the discretized regularized inverse problem
with exact kernel at x

α̃λ(x) Solution of the regularized inverse problem
with degenerate kernel at x

α̃λ
n(x) Solution of the discretized regularized inverse problem

with degenerate kernel at x

Table 2. Definition of function spaces and norms.

Notation Explanation

f The complex conjugate of the function f

C(�) Space of continuous complex-valued functions on �

Ck(�) Space of complex-valued k-times continuously differentiable functions on �

L∞(�) L∞(�) = {f |ess sup� |f (x)| < ∞}
Lp(�) Lp(�) = {f |(∫

�
|f (x)|p dx)1/p < ∞}, p ∈ [1,∞)

Dz
wf zth weak derivative of f

Hp(�) Hp(�) = {f |(∑|z|�p ‖Dz
wf ‖2

0)
1/2 < ∞}, p ∈ [1,∞)

‖f ‖0 The L2(�) norm of f

‖f ‖p The Hp(�) norm of f

‖f ‖∞ The L∞(�) norm of f

‖f ‖Lp(�) The Lp(�) norm of f

‖f ‖0,m The L2 norm of f over the mth finite element �m

‖f ‖p,m The Hp norm of f over the mth finite element �m

Q∗
i in (2.4) by Gaussian functions with sufficiently low variance, whose centres are located at

xj
s and xi

d , respectively.
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In this work, we consider the finite-element approximations of the solutions of the forward
problem. Hence, before we discretize the forward problem (see section 3.2), we consider the
variational formulations of (2.1)–(2.2) and (2.3)–(2.4) by multiplying (2.1) by a test function
φ ∈ H 1(�) and integrating over � [9]:∫

�

[
∇φ · D∇gj + φ

(
µa +

iω

c

)
gj − φQj

]
dx +

1

2a

∫
∂�

φgj dl = 0, (2.5)

where the boundary integral term results from the boundary condition (2.2).
Equivalently, we can express (2.5) by defining the sesquilinear form b(φ, gj ) [16]:

b(φ, gj ) := A(φ, gj ) +

〈
φ,

1

2a
gj

〉
= (φ,Qj ), (2.6)

where

A(φ, gj ) :=
∫

�

[
∇φ · D∇gj +

(
µa +

iω

c

)
φgj

]
dx,

(φ,Qj ) :=
∫

�

φQj dx,〈
φ,

1

2a
gj

〉
:= 1

2a

∫
∂�

φgj dl.

Similarly, the variational problem for (2.3)–(2.4) can be formulated by defining the sesquilinear
form b∗(φ, g∗

i ):

b∗(φ, g∗
i ) := A(φ, g∗

i ) +

〈
φ,

1

2a
g∗

i

〉
=

〈
φ,

1

2a
Q∗

i

〉
, (2.7)

where in A(φ, g∗
i ), ω is replaced by −ω.

The sesquilinear forms b(φ, gj ), b
∗(φ, g∗

i ) are continuous and positive definite for
bounded D and µa [16]. As a result, the variational problems (2.6) and (2.7) have unique
solutions, which follows from the Lax–Milgram lemma [9]. The solutions gj and g∗

i of the
variational problems (2.6) and (2.7) belong to H 1(�), which results from the H 1-boundedness
of the Gaussian function that approximates the point source Qj and the adjoint source Q∗

i

[16]. Assuming D,µa ∈ C1(�) and noting that Qj,Q
∗
i ∈ H 1(�); the solutions gj , g

∗
i satisfy

gj , g
∗
i ∈ H 2

loc(�) (in [12, chapter 6.3, theorem 2]). This last condition implies (in [12, chapter
5.6, theorem 6])

gj , g
∗
i ∈ C(�). (2.8)

2.2. Inverse problem

In this work, we focus on the estimation of the absorption coefficient; therefore, we assume
D(x) is known for all x ∈ � ∪ ∂�. To address the nonlinear nature of the inverse DOT
problem, we consider an iterative algorithm based on repetitive linearization of the inverse
problem using first-order Born approximation [2]. As a result, at each linearization step,
the following linear integral equation relates the differential optical measurements to a small
perturbation α on the absorption coefficient µa:

�i,j = −
∫

�

g∗
i (x)gj (x)α(x) dx (2.9)

:=
∫

�

Hi,j (x)α(x) dx

:= (Aaα)i,j , (2.10)
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where Hi,j = −g∗
i gj is the kernel in the (i, j)th entry of the matrix-valued operator

Aa : L∞(�) → C
Nd×Ns , gj is the solution of (2.6), g∗

i is the solution of (2.7), and �i,j

is the (i, j)th entry in the vector � ∈ C
Nd×Ns , which represents the differential measurement

at the ith detector due to the j th source. Note that approximating Q∗
i in (2.4) by a Gaussian

function centred at xi
d implies that �i,j corresponds to the scattered optical field evaluated

at xi
d , after filtering it by that Gaussian function. Thus, the Gaussian approximation of the

adjoint source models the finite size of the detectors. Similarly, approximating Qj in (2.1) by
a Gaussian function models the finite beam of the source.

The linear operator Aa : L∞(�) → C
Nd×Ns defined by (2.9) is compact and bounded by

(see appendices A and B)

‖Aa‖L∞(�)→l1 � NdNs max
i

‖g∗
i ‖0 max

j
‖gj‖0. (2.11)

For the given solution space L∞(�) for α, the compactness of the linear operatorAa implies the
illposedness of (2.9). Hence, we regularize (2.9) with a zeroth-order Tikhonov regularization.
This yields the following equation which defines our inverse problem at each linearization
step:

γ := A∗
a� = (A∗

aAa + λI)αλ (2.12)

:= Kαλ, (2.13)

where λ > 0 and αλ is an approximation to α. In this representation, I is the identity operator
and A∗

a : C
Nd×Ns → L1(�) is the adjoint of Aa , defined by

(A∗
aβ)(x) =

Nd,Ns∑
i,j

H ∗
i,j (x)βi,j =

Nd,Ns∑
i,j

−g∗
i (x)gj (x)βi,j , (2.14)

for all β ∈ C
Nd×Ns , where H ∗

i,j := −g∗
i gj is the (i, j)th kernel in the adjoint operator A∗

a . Let
A := A∗

aAa , then A : L∞(�) → L1(�) is defined as follows:

(Aα)(x) =
Nd,Ns∑

i,j

H ∗
i,j (x)

∫
�

Hi,j (x́)α(x́) dx́

:=
∫

�

κ(x, x́)α(x́) dx́, (2.15)

where κ(x, x́) stands for the kernel of the integral operator A and is given by

κ(x, x́) =
Nd,Ns∑

i,j

H ∗
i,j (x)Hi,j (x́). (2.16)

Having defined the adjoint operator A∗
a , we note that the operator A : L∞(�) → L1(�)

is compact and that the operator K : L∞(�) → L1(�) is bounded by ‖K‖ � ‖Aa‖2 + λ. We
assume that the solution αλ ∈ L∞(�) also satisfies αλ ∈ H 1(�). For the rest of the paper, we
will denote L∞(�) and L1(�) by X and Y, respectively.

3. Discretization of the inverse and forward problems

In this section, we outline the discretization of the inverse and forward problems.
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3.1. Inverse problem discretization

In practice, we seek a finite-dimensional approximation to the solution of the inverse problem
(2.13) at each linearization step. Therefore, we discretize (2.13) by projecting it onto a
finite-dimensional subspace.

Let Xn ⊂ X and Yn ⊂ Y denote a sequence of finite-dimensional subspaces of
dimension n = 1, 2, . . . , spanned by first-order Lagrange basis functions {L1, . . . , Ln}, and
{xp}, p = 1, . . . , n, be the set of collocation points on �. Then, the collocation method
approximates the solution of (2.13) by an element αλ

n ∈ Xn which satisfies(Kαλ
n

)
(xp) = γ (xp), p = 1, . . . , n, (3.1)

where we express αλ
n on a set {�m} of finite elements, m = 1, . . . , N� such that

⋃N�

m �m = �

as follows:

αλ
n(x) =

n∑
k=1

akLk(x). (3.2)

Note that in (3.2), ap = αλ
n(xp), p = 1, . . . , n. Then, (3.1) can explicitly be written as

λap +
n∑

k=1

ak

∫
�

κ(xp, x́)Lk(x́) dx́ = γ (xp), p = 1, . . . , n. (3.3)

Equivalently, the collocation method can be interpreted as a projection with the interpolation
operator Pn : Y → Yn defined by [18]

Pnf (x) :=
n∑

p=1

f (xp)Lp(x), x ∈ �, (3.4)

for all f ∈ Y . Then, (3.1) is equivalent to

PnKαλ
n = Pnγ. (3.5)

3.2. Forward problem discretization

In this section, we consider the finite-element discretizations of (2.6) and (2.7), and use
their solutions to approximate Hi,j and H ∗

i,j . As a result, we obtain finite-dimensional
approximations to K and γ .

Let Lk denote the kth first-order Lagrange basis function. Replacing φ and gj in (2.6)

with their finite-dimensional counterparts �(x) = ∑Nj

k=1 pkLk(x),Gj (x) = ∑Nj

k=1 ckLk(x),
and replacing φ and g∗

i in (2.7) with �(x) = ∑Ni

k=1 pkLk(x),G∗
i (x) = ∑Ni

k=1 dkLk(x) yields
the matrix equations:

Scj = qj , (3.6)

S∗di = q∗
i , (3.7)

for cj := [
c1, c2, . . . , cNj

]T
and di := [

d1, d2, . . . , dNi

]T
. Here S and S∗ are the finite-element

matrices and qj and q∗
i are the load vectors resulting from the finite-element discretization

of (2.6) and (2.7). Note that for each source (detector), the dimension of the finite-element
solution Gj (G∗

i ) can be different; therefore, Nj (Ni) may vary.
The H 1(�) boundedness of the solutions gj and g∗

i implies that the discretization errors
ej and e∗

i in Gj and G∗
i are bounded. Let

{
�

j
m

}
denote the set of linear elements used to



1122 M Guven et al

discretize (2.6) for m = 1, . . . , N
j

�, such that
⋃N

j

�

m �
j
m = � for all j = 1, . . . , Ns . Similarly,

let
{
�i

n

}
denote the set of linear elements used to discretize (2.7) for n = 1, . . . , N∗i

� , such

that
⋃N∗i

�

n �i
n = � for all i = 1, . . . , Nd . Then, a bound for ej and e∗

i on each finite element
can be found by using the discretization error estimates (in [9, theorem 4.4.4]):

‖ej‖0,mj � C‖gj‖1,mj hj
m, (3.8)

‖e∗
i ‖0,ni � C‖g∗

i ‖1,ni hi
n, (3.9)

where C is a positive constant, ‖·‖0,mj (‖·‖0,ni ) and ‖·‖1,mj (‖·‖1,ni ) are respectively the L2

and H 1 norms on �
j
m

(
�i

n

)
, and h

j
m

(
hi

n

)
is the diameter of the smallest ball containing the

finite element �
j
m

(
�i

n

)
in the solution Gj (G∗

i ).

3.3. Discretization of the inverse problem with operator approximations

Substituting the finite-element approximations Gj and G∗
i in (2.15) and (2.14), and using the

resulting finite-dimensional operator approximations in (3.5), we obtain the following linear
system in terms of α̃λ

n which approximates αλ:

PnK̃α̃λ
n = Pnγ̃ . (3.10)

In (3.10), the operator K̃ : X → Y is the finite-dimensional approximation of K in (2.13) and
PnK̃ : Xn → Yn. Similarly,

γ̃ := Ã∗
a�, (3.11)

where Ã∗
a is the approximation to the adjoint operator A∗

a , obtained by substituting Gj and G∗
i

in (2.14).

4. Discretization-based error analysis

As a result of the discretization of the forward and inverse problems, the reconstructed image
α̃λ

n in (3.10) is an approximation to the actual image αλ. Thus, the accuracy of the reconstructed
image depends on the error incurred by the discretization of the forward and inverse problems.

In this section, we analyse the effect of the discretization of the forward and inverse
problems on the accuracy of DOT imaging. The analysis is carried out based on the inverse
problem at each linearization defined by (2.13) and the associated kernel κ(x, x́).

In this work, we follow an approach which allows us to separately analyse the effect of
the discretization of each problem on the accuracy of the reconstructed optical image. In
this respect, we first consider the impact of projection (i.e. inverse problem discretization)
by the collocation method when the associated kernel κ(x, x́) in (2.13) is exact. Next, we
explore the case in which the kernel is replaced by its finite-dimensional approximation (i.e.
degenerate kernel) and analyse the effect of the forward problem discretization on the accuracy
of the reconstructed image without projecting (2.13).

Our analysis reveals that even if the kernel is exact, the accuracy of the solution
approximation αλ

n in (3.5) resulting from the inverse problem discretization depends on the
kernel κ(x, x́) of the integral operator. Likewise, the error in the reconstructed optical image
due to the discretization of the forward problem is a function of the inverse problem solution.
These results suggest that the discretization of the inverse and forward problems cannot be
considered independent of each other.
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4.1. Case 1. The kernel κ(x, x́) is exact

In this section, we show the effect of projection on the optical imaging accuracy. In the
analysis, we assume that the kernel κ(x, x́) is exact. We first prove the convergence of the
projection method for the operator K, and then analyse the effect of projection on the imaging
accuracy.

Clearly, the inverse operator K−1 : Y → X exists since K is positive definite for λ > 0.
Furthermore, by the compactness of A and Riesz theorem, the inverse operator K−1 is bounded
by

‖K−1‖Y→X � 1

λ
. (4.1)

Lemma. Projection by the collocation method for the operator K : X → Y converges.
Specifically, the sequence of finite-dimensional operators PnK : Xn → Yn is invertible for
sufficiently large n, and (PnK)−1PnKαλ → αλ, n → ∞. Furthermore,

‖(PnK)−1PnK‖X→Xn
� CM

‖K‖X→Y

λ
(4.2)

for some CM > 0 independent of n.

Proof. See appendix C. �

Based on the lemma, the following theorem provides an upper bound for the L1(�) norm of
the error between the solution αλ of (2.13) and the solution αλ

n of (3.5).

Theorem 1. Let {�m} denote a set of linear finite elements used in the discretization of the
inverse problem (2.13) for m = 1, . . . , N�, such that

⋃N�

m �m = �, and hm be the diameter
of the smallest ball that contains the mth element. Then,

∥∥αλ − αλ
n

∥∥
L1(�)

� C
√

V�‖I − Tn‖Y→Xn

N�∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn

max
i,j

‖g∗
i gj‖L1(�)

N�∑
m=1

Nd,Ns∑
i,j

‖g∗
i gj‖0,m‖αλ‖1,mhm, (4.3)

where C is a positive constant, V� is the volume of � and Tn : Y → Xn is a uniformly bounded
operator given by Tn = (I + 1

λ
PnA

)−1Pn.

Proof.

αλ − αλ
n = [I − (PnK)−1PnK]αλ

= [I − (PnK)−1PnK](αλ − ψ) (4.4)

since [I − (PnK)−1PnK]ψ = 0, where ψ ∈ Xn is the interpolant of αλ [9]. Using (C.2),

[I − (PnK)−1PnK] = I −
(
I +

1

λ
PnA

)−1 1

λ
PnK

= I − Tn

1

λ
K, (4.5)

where Tn := (I + 1
λ
PnA

)−1Pn is a uniformly bounded operator (see appendix C). We use K
defined by (2.13) and (4.5) in (4.4) to obtain

αλ − αλ
n = (I − Tn)(α

λ − ψ) − Tn

λ
A(αλ − ψ). (4.6)
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Then, we use the definition of A in (4.6) and find

αλ − αλ
n = (I − Tn)(α

λ − ψ) − Tn

λ

∫
�

κ(·, x́)(αλ − ψ)(x́) dx́. (4.7)

This leads to

‖αλ − αλ
n‖L1(�) � ‖I − Tn‖Y→Xn

‖αλ − ψ‖L1(�)

+
1

λ
‖Tn‖Y→Xn

∥∥∥∥
∫

�

κ(·, x́)(αλ − ψ)(x́) dx́

∥∥∥∥
L1(�)

� ‖I − Tn‖Y→Xn
‖αλ − ψ‖L1(�)

+
1

λ
‖Tn‖Y→Xn

∫
�

dx
∫

�

|κ(x, x́)(αλ − ψ)(x́)| dx́, (4.8)

The second term in (4.8) can be rewritten as

1

λ
‖Tn‖Y→Xn

∫
�

dx
∫

�

|κ(x, x́)(αλ − ψ)(x́)| dx́

= 1

λ
‖Tn‖Y→Xn

∫
�

dx

(
N�∑
m=1

∫
�m

|κ(x, x́)(αλ − ψ)(x́)| dx́

)
. (4.9)

Let eα be the interpolation error:

eα := αλ − ψ. (4.10)

Then, using (2.16),

N�∑
m=1

∫
�m

|κ(x, x́)eα(x́)| dx́ =
N�∑
m=1

∫
�m

∣∣∣∣∣∣
Nd,Ns∑

i,j

g∗
i (x)gj (x)g∗

i (x́)gj (x́)eα(x́)

∣∣∣∣∣∣ dx́ (4.11)

�
N�∑
m=1

Nd,Ns∑
i,j

|g∗
i (x)gj (x)|

∫
�m

|g∗
i (x́)gj (x́)||eα(x́)| dx́

�
N�∑
m=1

Nd,Ns∑
i,j

|g∗
i (x)gj (x)|‖g∗

i gj‖0,m‖eα‖0,m, (4.12)

where (4.12) follows from the Schwarz’ inequality. Note that g∗
i gj ∈ L2(�) by considering

(2.8) holds up to the boundary ∂� (see [11, theorem 2.1]).
We now use (4.9) and (4.12) to obtain

1

λ
‖Tn‖Y→Xn

∫
�

dx
(∫

�

|κ(x, x́)(αλ − ψ)(x́)| dx́
)

� 1

λ
‖Tn‖Y→Xn

∫
�

dx
N�∑

m=1

Nd,Ns∑
i,j

|g∗
i (x)gj (x)|‖g∗

i gj‖0,m‖eα‖0,m. (4.13)

Using the bound (4.13) in (4.8) and substituting the interpolation error bound [9]

‖eα‖0,m � C‖αλ‖1,mhm, (4.14)
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and noting ‖eα‖L1(�) �
√

V�

∑N�

m=1 ‖eα‖0,m, we obtain

‖αλ − αλ
n‖L1(�) � C

√
V�‖I − Tn‖Y→Xn

N�∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn

N�∑
m=1

Nd,Ns∑
i,j

‖g∗
i gj‖L1(�)‖g∗

i gj‖0,m‖αλ‖1,mhm.

� C
√

V�‖I − Tn‖Y→Xn

N�∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn

max
i,j

‖g∗
i gj‖L1(�)

N�∑
m=1

Nd,Ns∑
i,j

‖g∗
i gj‖0,m‖αλ‖1,mhm. (4.15)

�

Remark 1.

(i) Theorem 1 shows the spatial dependence of the inverse problem discretization on the
forward problem solution.

(ii) The first term in (4.15) suggests that the mesh of the inverse problem be refined where
‖αλ‖1 is large.

(iii) The second term in (4.15) shows that the term ‖αλ‖1,m is scaled spatially by ‖g∗
i gj‖0,m.

Thus, the effect of the interpolation error eα (see equation (4.10)) in the inverse problem
solution is scaled spatially by the solution of the forward problem. As a result, the
orientation of the sources and detectors with respect to the support of the optical
heterogeneity determines the extent of the bound on

∥∥αλ − αλ
n

∥∥
L1(�)

.

(iv) The regularization parameter affects the bound on
∥∥αλ − αλ

n

∥∥
L1(�)

.

(v) Increasing the number of sources and detectors increases the bound on
∥∥αλ − αλ

n

∥∥
L1(�)

.

Remark 2.

(i) Note that the conventional interpolation error estimate given in (4.14) depends only on
the smoothness and support of αλ, and the finite-dimensional space of approximating
functions [9]. On the other hand, the error estimate (4.3) in theorem 1 shows that the
accuracy of the reconstructed image αλ

n depends on the orientation of the absorptive
heterogeneity with respect to the sources and detectors, as well as on the bound (4.14) on
the interpolation error.

(ii) An error bound similar to (4.3) follows if one uses the Galerkin method [18] instead of
the collocation method for projection.

(iii) The interpolation error bound (4.14) can be modified based on the choice of the basis
function in (3.2) and the smoothness of the solution αλ (theorem 4.4.4. in [9]). For
instance, if αλ ∈ H 2(�) and quadratic Lagrange basis functions are used, then (4.14) can
be replaced by

‖eα‖0,m � C‖αλ‖2,mh2
m,

for some C > 0.
(iv) An error bound similar to (4.3) can be derived for the error that occurs as a result of

the discretization of the inverse problem in electrical impedance tomography, optical
fluorescence tomography, bioluminescence tomography and microwave imaging. Note
that in all these imaging modalities, the forward problem is modelled by a PDE and the
inverse problem can be interpreted in terms of a linear integral equation, whose kernel is
related to the solution of this PDE.
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(v) Let γ δ be the perturbed right-hand side γ of (3.5) due to the presence of noise, such that
‖γ δ − γ ‖L1(�) � δ. Then, an additional term is introduced to the error bound in (4.3) due
to this perturbation:

∥∥αλ − αλ
n

∥∥
L1(�)

� C
√

V�‖I − Tn‖Y→Xn

N�∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn

max
i,j

‖g∗
i gj‖L1(�)

N�∑
m=1

Nd,Ns∑
i,j

‖g∗
i gj‖0,m‖αλ‖1,mhm

+
CM

λ
δ, (4.16)

where CM > 0 is the constant in (4.2) with the use of first-order Lagrange basis functions
(see appendix C). The additional term CMδ/λ indicates that the choice of basis functions
may be critical in the presence of noise.

4.2. Case 2. The kernel is degenerate

In this section, we first derive approximate upper bounds for the approximation errors ‖K̃−K‖
and ‖γ̃ − γ ‖, which result from the discretization of the forward problem. Then, we show the
effect of these approximation errors on the accuracy of the reconstructed optical image. For
notational convenience, we will drop the subscripts on the norms ‖·‖ where necessary.

The operator K : X → Y is bounded with a bounded inverse K−1 : Y → X. By the
finite-element approximation of the associated kernel, the sequence of bounded linear finite-
dimensional operators K̃ is norm convergent ‖K̃−K‖ → 0;Nj,Ni → ∞, for j = 1, . . . , Ns

and i = 1, . . . , Nd , and

‖K̃−1‖Y→X < 1/λ, (4.17)

which can be obtained analogous to (4.1).
In the following, we derive an explicit approximation to the error ‖K̃−K‖ in terms of the

associated kernel and the discretization error in the kernel approximation. The result is then
used to compute the error in the reconstructed optical image due to ‖K̃ − K‖.

By definition,

‖(Aa − Ãa)α‖l1 =
Nd,Ns∑

i,j

∣∣∣∣
∫

�

(g∗
i (x)gj (x) − G∗

i (x)Gj (x))α(x) dx

∣∣∣∣ , (4.18)

where G∗
i , Gj are the finite-element approximations to g∗

i and gj , respectively. We can expand
g∗

i gj − G∗
i Gj as

g∗
i gj − G∗

i Gj = e∗
i ej + Gje

∗
i + G∗

i ej , (4.19)

where e∗
i := g∗

i −G∗
i and ej := gj −Gj . Replacing G∗

i and Gj respectively with g∗
i − e∗

i and
gj − ej , we get

g∗
i gj − G∗

i Gj = gje
∗
i + g∗

i ej − e∗
i ej

≈ gje
∗
i + g∗

i ej , (4.20)

where we neglect the term e∗
i ej .

We can express K − K̃ as

K − K̃ = A∗
aAa − Ã∗

aÃa. (4.21)
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Following a similar approach as above,

A∗
aAa − Ã∗

aÃa = (A∗
a − Ã∗

a)(Aa − Ãa) + Ã∗
a(Aa − Ãa) + (A∗

a − Ã∗
a)Ãa. (4.22)

As a result, the following condition holds

‖K̃ − K‖ � ‖(A∗
a − Ã∗

a)(Aa − Ãa)‖ + ‖Ã∗
a(Aa − Ãa) + (A∗

a − Ã∗
a)Ãa‖. (4.23)

Since Ãa = −(Aa − Ãa) + Aa , (4.23) can be rewritten as

‖K̃ − K‖ = ‖A∗
aAa − Ã∗

aÃa‖
� ‖(A∗

a − Ã∗
a)(Aa − Ãa)‖ + 2‖A∗

a(Aa − Ãa)‖
≈ 2‖A∗

a(Aa − Ãa)‖, (4.24)

where we neglect the term ‖(A∗
a − Ã∗

a)(Aa − Ãa)‖.
Similarly, ‖γ̃ − γ ‖ can be interpreted as

‖γ̃ − γ ‖L1(�) =
∫

�

∣∣∣∣∣∣
Nd,Ns∑

i,j

(g∗
i (x)gj (x) − G∗

i (x)Gj (x))�i,j

∣∣∣∣∣∣ dx

≈
∫

�

∣∣∣∣∣∣
Nd,Ns∑

i,j

(e∗
i (x)gj (x) + g∗

i (x)ej (x))�i,j

∣∣∣∣∣∣ dx, (4.25)

where the error in �i,j due to discretization is neglected and the last approximation is derived
similar to (4.20).

We now analyse the effect of the forward problem discretization on the accuracy of the
reconstructed optical image. Let α̃λ be the solution of

K̃α̃λ = γ̃ , (4.26)

where K̃ and γ̃ are the finite-dimensional approximations to K and γ , respectively. Then,
by theorem 10.1 in [18], the error in the solution α̃λ with respect to the actual solution αλ is
bounded by

‖αλ − α̃λ‖ � 1

λ
{‖(K̃ − K)αλ‖ + ‖γ̃ − γ ‖}. (4.27)

In the next theorem, we will expand the terms in (4.27) to show explicitly the effect of
the forward problem discretization on the accuracy of the inverse problem solution.

Theorem 2. Let
{
�

j
m

}
denote the set of linear elements used to discretize (2.6) for

m = 1, . . . , N
j

�, such that
⋃N

j

�

m �
j
m = � and h

j
m be the diameter of the smallest ball that

contains the element �
j
m in the solution Gj , for all j = 1, . . . , Ns . Similarly, let

{
�i

n

}
denote

the set of linear elements used to discretize (2.7) for n = 1, . . . , N∗i
� , such that

⋃N∗i
�

n �i
n = �

and hi
n be the diameter of the smallest ball that contains the element �i

n in the solution G∗
i ,

for all i = 1, . . . , Nd . Then, a bound for the error between the solution αλ of (2.13) and the
solution α̃λ of (4.26) due to the approximations K̃ and γ̃ is given by

‖αλ − α̃λ‖L1(�) � C

λ
max
i,j

‖g∗
i gj‖L1(�)


 Nd∑

i=1

N∗i
� ,Ns∑
n,j

(
2‖gjα

λ‖0,ni + ‖α‖∞‖gj‖0,ni

) ‖g∗
i ‖1,ni hi

n

+
Ns∑

j=1

N
j

�,Nd∑
m,i

(2‖g∗
i α

λ‖0,mj + ‖α‖∞‖g∗
i ‖0,mj )‖gj‖1,mj hj

m


 , (4.28)

where C is a positive constant.
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Proof. Using (4.24), (4.18) and (4.20), we can write

‖(K̃ − K)αλ‖L1(�) ≈ 2‖A∗
a(Aa − Ãa)α

λ‖L1(�)

≈ 2

∥∥∥∥∥∥
Nd,Ns∑

i,j

g∗
i (·)gj (·)

∫
�

(gj (x́)e∗
i (x́) + g∗

i (x́)ej (x́))αλ(x́) dx́

∥∥∥∥∥∥
L1(�)

� 2 max
i,j

‖g∗
i gj‖L1(�)

Nd ,Ns∑
i,j

∫
�

|(gj (x́)e∗
i (x́) + g∗

i (x́)ej (x́))αλ(x́)| dx́. (4.29)

An upper bound for the integral in (4.29) can be obtained as follows:∫
�

|(gj (x́)e∗
i (x́) + g∗

i (x́)ej (x́))αλ(x́)| dx́

�
N∗i

�∑
n=1

‖e∗
i ‖0,ni ‖gjα

λ‖0,ni +
N

j

�∑
m=1

‖ej‖0,mj ‖g∗
i α

λ‖0,mj . (4.30)

Note that gjα
λ ∈ L2(�) since |gjα

λ| � |gj |‖αλ‖∞. Similarly, g∗
i α

λ ∈ L2(�) since
|g∗

i α
λ| � |g∗

i |‖αλ‖∞. Using (4.30) in (4.29),

‖(K̃ − K)αλ‖L1(�) � 2 max
i,j

‖g∗
i gj‖L1(�)

×

 Nd∑

i=1

N∗i
� ,Ns∑
n,j

‖e∗
i ‖0,ni ‖gjα

λ‖0,ni +
Ns∑

j=1

N
j

�,Nd∑
m,i

‖ej‖0,mj ‖g∗
i α

λ‖0,mj


 .

(4.31)

To compute an upper bound for ‖γ̃ − γ ‖ using (4.25), we first write

∫
�

∣∣∣∣∣∣
Nd,Ns∑

i,j

(e∗
i (x)gj (x) + g∗

i (x)ej (x))�i,j

∣∣∣∣∣∣ dx

� max
i,j

|�i,j |
∫

�

Nd,Ns∑
i,j

|e∗
i (x)gj (x) + g∗

i (x)ej (x)| dx

� max
i,j

|�i,j |

 Nd∑

i=1

N∗i
� ,Ns∑
n,j

‖e∗
i ‖0,ni ‖gj‖0,ni +

Ns∑
i=j

N
j

�,Nd∑
m,i

‖g∗
i ‖0,mj ‖ej‖0,mj


 . (4.32)

Noting (2.9),

max
i,j

|�i,j | � max
i,j

‖g∗
i gj‖L1(�)‖α‖∞, (4.33)

which leads to

max
i,j

|�i,j |

 Nd∑

i=1

N∗i
� ,Ns∑
n,j

‖e∗
i ‖0,ni ‖gj‖0,ni +

Ns∑
i=j

N
j

�,Nd∑
m,i

‖g∗
i ‖0,mj ‖ej‖0,mj




� max
i,j

‖g∗
i gj‖L1(�)‖α‖∞


 Nd∑

i=1

N∗i
� ,Ns∑
n,j

‖e∗
i ‖0,ni ‖gj‖0,ni +

Ns∑
i=j

N
j

�,Nd∑
m,i

‖g∗
i ‖0,mj ‖ej‖0,mj


 .

(4.34)
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We now use (4.31), (4.34), the corresponding discretization error estimates (3.8)–(3.9), and
(4.27) to obtain (4.28). �
Remark 3.
(i) Theorem 2 suggests the use of meshes designed individually for the solutions Gj, j =

1, . . . , Ns and G∗
i , i = 1, . . . , Nd .

(ii) Theorem 2 states explicitly the effect of the forward problem discretization on the accuracy
of the inverse problem solution. In this context, theorem 2 suggests a discretization scheme
for the forward problem, where the discretization criterion is based on the inverse problem
solution accuracy, rather than the accuracy of the forward problem solution.

(iii) For each source, when solving for Gj, h
j
m has to be kept small where (2‖g∗

i α
λ‖0,mj +

‖α‖∞‖g∗
i ‖0,mj )‖gj‖1,mj is large. Note that ‖gj‖1,mj will be large on the elements close

to the j th source.
(iv) For each detector, when solving for G∗

i , h
i
n has to be kept small where (2‖gjα

λ‖0,ni +
‖α‖∞‖gj‖0,ni )‖g∗

i ‖1,ni is large. Note that ‖g∗
i ‖1,ni will be large on the elements close to

the ith detector.
(v) |gj | and |g∗

i | are higher close to the sources and detectors, respectively. Therefore, h
j
m

has to be small around the j th source and around all detectors, where αλ is nonzero.
Likewise, hi

n has to be small around the ith detector and around all sources, where αλ is
nonzero.

(vi) If αλ is nonzero on the whole domain �, then the error may become higher depending on
the magnitude of |gj | and |g∗

i |.
(vii) The regularization parameter affects the bound on ‖αλ − α̃λ‖L1(�).

(viii) Increasing the number of sources and detectors increases the bound on ‖αλ − α̃λ‖L1(�).

Remark 4.
(i) Note that the finite-element discretization error estimates (3.8)–(3.9) depend on only the

smoothness and support of gj and g∗
i , and the finite dimensional space of approximating

functions [9]. However, the error estimate (4.28) in theorem 2 shows that the accuracy
of the reconstructed image α̃λ depends on the orientation of the absorptive heterogeneity
with respect to the sources and detectors, as well as on the finite-element discretization
error estimates (3.8)–(3.9). In this respect, the estimate (4.28) in theorem 2 shows that
reducing the discretization error in the solutions Gj and G∗

i of the forward problem may
not ensure the accuracy of the reconstructed absorption image (see [14]).

(ii) In case a different discretization approach such as finite difference [20] or finite
volume [13] is used to solve the forward problem, theorem 2 can be modified in a
straightforward manner by replacing the discretization error estimates (3.8) and (3.9)
with the corresponding error estimates specific to the method of choice [13, 20].

(iii) Let γ̃ δ be the perturbed right-hand side γ̃ of (4.26) due to the presence of noise, such that
‖γ̃ δ − γ̃ ‖L1(�) � δ̃. Then, an additional term is introduced to the bound in (4.28) due to
this perturbation:

‖αλ − α̃λ‖L1(�) � C

λ
max
i,j

‖g∗
i gj‖L1(�)

×

 Nd∑

i=1

N∗i
� ,Ns∑
n,j

(2‖gjα
λ‖0,ni + ‖α‖∞‖gj‖0,ni )‖g∗

i ‖1,ni hi
n

+
Ns∑

j=1

N
j

�,Nd∑
m,i

(2‖g∗
i α

λ‖0,mj + ‖α‖∞‖g∗
i ‖0,mj )‖gj‖1,mj hj

m


 +

δ̃

λ
. (4.35)
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Clearly, the additional term δ̃/λ due to the presence of noise in (4.35) is independent of
the discretization of the forward problem.

(iv) Theorem 2 provides a general framework to analyse the error in reconstructed optical
images resulting from the perturbations in the kernel of the linear integral equation (2.16).
In general, a perturbation in the kernel of the linear integral equation (2.16) can occur
due to errors resulting from the numerical integration of (2.6)–(2.7), the approximation of
the boundary ∂�, the inaccurate approximation of the source Qj and/or the background
optical properties. Furthermore, the analysis framework in theorem 2 can be used to
analyse the effect of linearization of the Lippmann–Schwinger-type equations [10] using
Born approximation on the accuracy of the reconstructed optical images [15].

(v) A bound similar to (4.28) can be derived for the error that occurs as a result of
the discretization of the forward problem in electrical impedance tomography, optical
fluorescence tomography, bioluminescence tomography and microwave imaging.

4.3. Iterative Born approximation

In this section, we explore the error in the inverse problem solution within an iterative
linearization approach.

The error analysis presented in this paper covers the error which results from the
discretization of the forward and inverse problems. If α is sufficiently low, then one iteration
suffices to solve the inverse problem and the error analysis discussed above applies. When
iterative linearization is considered to address the nonlinearity of the inverse problem, we can
make use of the error analysis at each linearized step as follows: let αλ

(t) and α̃λ
n(t) be the

actual solution of the regularized inverse problem (2.13) and the solution of (3.10) at the t th
linearization step, respectively. At the end of the (r − 1)th linearization step, the absorption
coefficient estimate at x is given by µ̂(r−1)

a (x) = µ(0)
a (x) +

∑r−1
t=1 α̃λ

n(t)(x), where α̃λ
n(t) has an

error due to discretization with respect to the actual solution αλ
(t), and µ(0)

a is the initial guess for
the background absorption coefficient. In the next linearization, an error on the new solution
update µ̂(r)

a will be introduced due to

(i) projection (inverse problem discretization),

(ii) the error (K̃ − K)(r−1) in the operator (K̃)(r−1) and the error (γ̃ − γ )(r−1) in (γ̃ )(r−1)

resulting from the forward problem discretization, and

(iii) the error in the (r − 1)th update µ̂(r−1)
a , resulting from the discretization of the forward

and inverse problems. Note that µ̂(r−1)
a appears as a coefficient in the boundary value

problems (2.1)–(2.2) and (2.3)–(2.4). An error in this coefficient implies perturbation in
the solutions of (2.1)–(2.2) and (2.3)–(2.4). As a result, Gj and G∗

i will have error terms
in addition to the discretization error.

As a result, the error in µ̂(r)
a at the rth iteration is bounded by

∥∥µa − µ̂(r)
a

∥∥ =
∥∥∥∥∥

r∑
t=1

αλ
(t) − α̃λ

n(t)

∥∥∥∥∥ �
r∑

t=1

∥∥αλ
(t) − α̃λ

n(t)

∥∥, (4.36)

assuming that the initial guess µ(0)
a for the background absorption is approximated accurately

while solving the boundary value problems (2.1)–(2.2) and (2.3)–(2.4) at the first iteration,
that is µ(0)

a (x) − ∑n
k=1 µ(0)

a (xk)Lk(x) → 0, for all x ∈ �.
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5. Conclusion

In this work, we presented an error analysis to show the relationship between the error in
the reconstructed optical absorption images and the discretization of the forward and inverse
problems. We summarized the implications of the error analysis in two theorems which provide
an insight into the impact of forward and inverse problem discretizations on the accuracy of
the reconstructed optical absorption images. These theorems show that the error in the
reconstructed optical image due to the discretization of each problem is bounded by roughly
the multiplication of the discretization error in the corresponding solution and the solution of
the other problem. In particular, theorem 2 shows that solving the diffusion equation and the
associated adjoint problem accurately may not ensure small values for ‖K̃−K‖ and ‖γ − γ̃ ‖,
which may lead to large errors in the reconstructed optical images, depending on the value
of the regularization parameter. Similarly, relatively large discretization error in the solution
of the forward problem may have relatively low impact on the accuracy of the reconstructed
optical images, depending on the source–detector configuration, and orientation with respect
to the optical heterogeneities. We have also shown that the error estimates can be extended to
include the effect of noise on the overall error in the reconstructed images.

The error analysis presented in this work motivates the development of novel adaptive
discretization schemes based on the error estimates in theorems 1 and 2. In the sequel of this
work, we propose two novel adaptive discretization algorithms for the forward and inverse
problems [14], and justify the validity of theorems 1 and 2.

The error analysis can be extended to show the effect of the discretization error on the
accuracy of the simultaneous reconstruction of scattering and absorption coefficients, which
will be the focus of our future work. Finally, we note that the error analysis introduced in
this paper is not limited to DOT, and can easily be adapted for similar inverse parameter
estimation problems such as electrical impedance tomography, bioluminescence tomography,
optical fluorescence tomography, microwave imaging etc.
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Appendix A. Boundedness of Aa

‖Aaα‖l1 =
Nd,Ns∑

i,j

∣∣∣∣
∫

�

Hi,j (x)α(x) dx

∣∣∣∣ . (A.1)

We can write the following inequality:

‖Aaα‖l1 �
Nd,Ns∑

i,j

∫
�

|Hi,j (x)α(x)| dx �


Nd,Ns∑

i,j

∫
�

|Hi,j (x)| dx


 ‖α‖∞. (A.2)
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Using Schwarz’ inequality, we can write an upper bound for the summation as follows:
Nd,Ns∑

i,j

∫
�

|Hi,j (x)| dx =
Nd,Ns∑

i,j

‖g∗
i gj‖L1(�)

�
Nd,Ns∑

i,j

‖g∗
i ‖0‖gj‖0

� NdNs max
i

‖g∗
i ‖0 max

j
‖gj‖0, (A.3)

which leads to

‖Aaα‖l1 � NdNs max
i

‖g∗
i ‖0 max

j
‖gj‖0‖α‖∞.

Therefore an upper bound for the norm of Aa is given by

‖Aa‖L∞(�)→l1 � NdNs max
i

‖g∗
i ‖0 max

j
‖gj‖0. (A.4)

The boundedness of gj and g∗
i imply that Aa is bounded.

Appendix B. Compactness of Aa

Aa is bounded by (A.4). Furthermore Aa maps the infinite-dimensional subspace L∞(�) to a
finite-dimensional subspace C

Nd×Ns , that is the range R(Aa) of Aa satisfies R(Aa) ∈ C
Nd×Ns

due to the finite number of sources and detectors. As a result, Aa is compact [18]. The inverse
problem is illposed as a consequence of compactness [18].

Appendix C. Proof of the lemma

The identity operator I is a bounded operator with bounded inverse and (PnI)−1 = I : Xn →
Xn. Furthermore, ‖Pn‖X→Xn

is bounded for first-order Lagrange basis functions [4, 18]. Thus,
projection by collocation converges for the identity operator. A is bounded and compact, and
K = λI + A is injective, with bounded inverse given by (4.1). As a result, by theorem 13.7 in
[18], the projection method also converges for K = λI + A. Convergence of projection for K
implies (PnK)−1PnKαλ → αλ, n → ∞ for (PnK)−1PnK : X → Xn [18].

It follows from the proof of theorem 13.7 in [18] that
(I + 1

λ
PnA

)−1
: Yn → Xn exists

and is uniformly bounded for all sufficiently large n. Then from PnK = λPn

(I + 1
λ
PnA

) =
λ
(I + 1

λ
PnA

)
, it follows that PnK : Xn → Yn is invertible for all sufficiently large n with the

inverse given by

(PnK)−1 =
(
I +

1

λ
PnA

)−1 1

λ
. (C.1)

As a result we can write (PnK)−1PnK as follows:

(PnK)−1PnK =
(
I +

1

λ
PnA

)−1 1

λ
PnK. (C.2)

Thus,

‖(PnK)−1PnK‖X→Xn
� CM

‖K‖X→Y

λ
(C.3)

where CM > 0 is independent of n, using the facts that projection by collocation method
converges for the identity operator and

(I + 1
λ
PnA

)−1
is uniformly bounded.
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Abstract
In part I (Guven et al 2007 Inverse Problems 23 1115–33), we analysed
the error in the reconstructed optical absorption images resulting from the
discretization of the forward and inverse problems. Our analysis led to two new
error estimates, which present the relationship between the optical absorption
imaging accuracy and the discretization error in the solutions of the forward
and inverse problems. In this work, based on the analysis presented in part I,
we develop new adaptive discretization schemes for the forward and inverse
problems in order to reduce the error in the reconstructed images resulting
from discretization. The proposed discretization schemes lead to adaptively
refined composite meshes that yield the desired level of imaging accuracy while
reducing the size of the discretized forward and inverse problems. We present
numerical experiments to validate the error estimates developed in part I and
show the improvement in the accuracy of the reconstructed optical images with
the new adaptive mesh generation algorithms.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Numerical approaches in solving the forward and inverse problems in diffuse optical
tomography (DOT) pose a tradeoff between computational efficiency and imaging accuracy.
This tradeoff is a direct consequence of the discretization of the forward and inverse problems
[2, 9] and the size of the resulting discrete forward and inverse problems. The imaging
accuracy depends on the discretization error in the forward and inverse problem solutions.
On the other hand, attempting to minimize the discretization error in the solutions of both

0266-5611/07/031135+26$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1135
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problems separately implies a significant increase in the size of the discrete forward and inverse
problems. Hence, it is important to understand the relationship between the discretization error
and the resulting error in the solution of the inverse problem. Such a relationship can illuminate
the mutual dependence of the forward and inverse problem solutions and identify the factors
that control the extent to which the discretization error in the solutions of the forward and
inverse problems affects the accuracy of the reconstructed optical images.

In part I of this two-part study, we presented an error analysis which showed the effect of
discretization of the forward and inverse problems on the accuracy of the reconstructed optical
absorption images [9]. The analysis led to two new error estimates that took into account the
interdependence of the forward and inverse problems (see section 2). In the second part of our
work, based on the error analysis presented in part I, we develop new adaptive discretization
schemes for the forward and inverse problems. The resulting locally refined meshes reduce
the error in the reconstructed optical images while keeping the size of the discrete forward and
inverse problems relatively small.

There has been extensive research on adaptive mesh generation for the numerical solution
of partial differential equations (see [9] for a list of publications) and inverse parameter
estimation problems to reduce the undesired effect of discretization error [4, 14]. In the
area of DOT, in [3] it was numerically shown that approximation errors resulting from the
discretization of the forward problem can lead to significant degradation in the quality of
the reconstructed images. In that work, the error in the reconstructed images is minimized
by using an enhanced imaging model that treats this additional approximation error within
the Bayesian framework. Alternatively, several investigators have reported on adaptive
discretization schemes for the forward and inverse problems to address the optical image
degradation due to discretization. In [6] a ‘data-driven zonation’ scheme, which can be
viewed as an adaptive discretization algorithm, was proposed for fluorescence imaging [6].
In [8], we presented a region-of-interest (ROI) imaging scheme for DOT, which employed
a multi-level algorithm on a non-uniform grid. The non-uniform grid is designed so as to
provide finer spatial resolution for the ROI which corresponds to the tumour region as indicated
by a priori anatomical image. In [16] an a priori non-uniform mesh design which provides
high resolution at the heterogeneities and near boundary regions was proposed. In that work,
the mesh refinement is independent of the source–detector configuration and the location of
the heterogeneities. In [7] a dual mesh strategy was proposed, in which, a relatively fine
uniform mesh is considered for the forward problem discretization and a coarse uniform mesh
is generated for the inverse problem discretization. In the same study, an adaptive refinement
scheme was proposed for the inverse problem discretization, but no adaptive refinement was
considered for the solution of the forward problem. Another dual mesh strategy which makes
use of a priori ultrasound information was presented in [10]. In that work, the dual mesh
is a coarse mesh for the background tissue and a relatively fine mesh for the heterogeneity,
similar to the approach in [8]. In fluorescence imaging, a dual adaptive mesh strategy was
used to discretize the inverse problem and the associated coupled diffusion equations, where
the refinement criterion is based on a posteriori discretization error estimates [12]. Note that
in all these studies [6–8, 10, 12, 16], the mesh refinement criteria considered for the inverse
(forward) problem disregard the impact of the solution of the forward (inverse) problem. In
other words, the discretization of each problem is considered independently of the solution of
the other problem.

In this work, based on the two error bounds provided by the error analysis in part I [9], we
introduce an adaptive discretization scheme for the forward and inverse problems, respectively.
We remark that the mesh refinement criterion for each problem comprises the discretization
error in the corresponding problem solution, scaled spatially by the solutions of both problems.
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Table 1. Definition of function spaces and norms.

Notation Explanation

f The complex conjugate of the function f

C(�) Space of continuous complex-valued functions on �

Ck(�) Space of complex-valued k-times continuously differentiable functions on �

L∞(�) L∞(�) = {f |ess sup� |f (x)| < ∞}
Lp(�) Lp(�) =

{
f

∣∣∣ ( ∫
�

|f (x)|p dx
)1/p

< ∞
}
, p ∈ [1,∞(b))

Dz
wf zth weak derivative of f

Hp(�) Hp(�) =
{
f

∣∣∣ ( ∑
|z|�p

∥∥∥Dz
wf

∥∥∥2

0

)1/2
< ∞

}
, p ∈ [1,∞)

‖f ‖0 The L2(�) norm of f

‖f ‖p The Hp(�) norm of f

‖f ‖∞ The L∞(�) norm of f

‖f ‖Lp(�) The Lp(�) norm of f

‖f ‖0,m The L2 norm of f over the mth finite element �m

‖f ‖p,m The Hp norm of f over the mth finite element �m

Thus, the proposed adaptive mesh generation algorithms address the interdependence between
the solutions of the forward and inverse problems and take into account the orientation of the
source–detectors and the absorptive perturbations. This makes the adaptive discretization
algorithms introduced in this paper different from the previous approaches [6–8, 10, 12, 16].
The simulation experiments validate the implications of our error analysis and show that the
proposed mesh generation algorithms significantly improve the accuracy of the reconstructed
optical images for a given number of unknowns in the discrete forward and inverse problems.
We specifically show that using the discretization error estimates, which do not take into
account the interdependence of forward and inverse problems as a criterion for discretization,
may lead to severely degraded image reconstructions (see simulation study 3). We also
discuss the computational complexity of the proposed adaptive mesh generation algorithms
and compare it to the computational complexity of mesh generation algorithms based on
the conventional discretization error estimates. We finally note that the proposed adaptive
mesh generation algorithms can be adapted for similar inverse parameter estimation problems,
such as electrical impedance tomography, optical fluorescence tomography, bioluminescence
tomography, microwave imaging, etc.

The outline of this paper is as follows: in section 2, we give a brief overview of the forward
and inverse DOT problems and recall the two theorems presented in part I which summarize
the impact of discretization on the accuracy of the reconstructed optical images. In section 3,
based on these two theorems, we introduce the adaptive mesh generation algorithms for the
solution of the forward and inverse problems and discuss their computational complexity. In
section 4, we present our experimental results, which is followed by section 5. The appendix
includes the solution of a model problem used to initiate the adaptive mesh generation.

2. Overview

In this section, we first briefly define the forward and inverse problems in DOT. Next, we
state theorems 1 and 2 presented in the first part of this work [9] to recall the effect of the
discretization of the forward and inverse problems on the accuracy of optical absorption image
reconstruction. We refer to table 1 for the explanation of the notation associated with functions
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and their norms. Note that calligraphic letters are used to denote the operators, e.g. Aa, I,

K etc.

2.1. Forward and inverse problems in DOT

We consider the following boundary value problem to model the near-infrared light propagation
in a bounded domain � ⊂ R

3 with Lipschitz boundary ∂� [2, 5]:

−∇ · D(x)∇gj (x) +

(
µa(x) +

iω

c

)
gj (x) = Qj(x) x ∈ �, (2.1)

gj (x) + 2aD(x)
∂gj

∂n
(x) = 0 x ∈ ∂�, (2.2)

where gj (x) is the photon density at x,Qj is the point source located at the source position
xj

s , j = 1, . . . , Ns , where Ns is the number of sources, D(x) is the diffusion coefficient and
µa(x) is the absorption coefficient at x, i = √−1, ω is the modulation frequency of the
source, c is the speed of the light, a = (1 + R)/(1 − R) where R is a parameter governing
the internal reflection at the boundary ∂�, and ∂ · /∂n denotes the directional derivative along
the unit normal vector on the boundary. The boundary value problem (2.1)–(2.2) constitutes
the forward problem in DOT together with the associated adjoint problem [2, 9]:

−∇ · D(x)∇g∗
i (x) +

(
µa(x) − iω

c

)
g∗

i (x) = 0 x ∈ �, (2.3)

g∗
i (x) + 2aD(x)

∂g∗
i

∂n
(x) = Q∗

i (x) x ∈ ∂�, (2.4)

where Q∗
i is the adjoint source located at the detector position xi

d , i = 1, . . . , Nd , where Nd

is the number of detectors. Note that we approximate the point source Qj in (2.1) and the
adjoint source Q∗

i in (2.4) by Gaussian functions with sufficiently low variance, whose centres
are located at xj

s and xi
d , respectively.

In this work, we focus on the estimation of the absorption coefficient and consider an
iterative algorithm based on repetitive linearization of the inverse problem using first-order
Born approximation. Using a zeroth-order Tikhonov regularization to address the illposedness,
the inverse problem at each iteration reads

γ (x) := (A∗
a�)(x) = [(A∗

aAa + λI)αλ](x)

:=
∫

�

κ(x, x́)αλ(x́) dx́ + λαλ(x) (2.5)

:= (Kαλ)(x), (2.6)

where � ∈ C
Nd×Ns is the vector of differential measurements at Nd number of detectors due

to Ns number of sources, as a result of the small perturbation α on the background absorption
coefficient µa , and αλ is the solution of the regularized inverse problem. In (2.5), κ(x, x́) is
the kernel of the integral equation, given by [9]

κ(x, x́) =
Nd,Ns∑

i,j

H ∗
i,j (x)Hi,j (x́), (2.7)
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where Hi,j := −g∗
i gj is the (i, j)th kernel of the matrix-valued operator Aa : L∞(�) →

C
Nd×Ns and H ∗

i,j := −g∗
i gj is the (i, j)th kernel of the adjoint operator A∗

a : C
Nd×Ns → L1(�)

defined by

(A∗
aβ)(x) =

Nd,Ns∑
i,j

H ∗
i,j (x)βi,j =

Nd,Ns∑
i,j

−g∗
i (x)gj (x)βi,j , (2.8)

for all β ∈ C
Nd×Ns . We note that gj and g∗

i in (2.7) and (2.8) are the solutions of the variational
formulations of (2.1)–(2.2) and (2.3)–(2.4), respectively [9]. Assume that D,µa ∈ C1(�).
Noting Qj,Q

∗
i ∈ H 1(�), the solutions gj , g

∗
i ∈ H 1(�) of the variational formulations of the

boundary value problems (2.1)–(2.2) and (2.3)–(2.4) also satisfy [9]

gj , g
∗
i ∈ C(�). (2.9)

For the rest of the paper, we will denote L∞(�) and L1(�) by X and Y, respectively.
Below we summarize the two theorems of part I [9] and provide the error estimates

which will be used in the design of adaptive meshes for the discretization of the forward and
inverse DOT problems. In this respect, we first consider the impact of the inverse problem
discretization when the associated kernel κ(x, x́) in (2.5) is exact. Next, we give the error
estimate for the case in which the kernel is replaced by its finite-dimensional approximation
(i.e. degenerate kernel) and analyse the effect of the forward problem discretization on the
accuracy of the reconstructed image without projecting (2.6).

2.2. Effect of inverse problem discretization

Let Xn ⊂ X and Yn ⊂ Y denote a sequence of finite dimensional subspaces of dimension
n = 1, 2, . . . , spanned by first-order Lagrange basis functions {L1, . . . , Ln}, and {xp}, p =
1, . . . , n, be the set of collocation points on �. Then, the discretization of the inverse problem
(2.6) by projecting it onto the finite dimensional subspace Yn using the collocation method
approximates the solution of (2.6) by an element αλ

n ∈ Xn which satisfies(Kαλ
n

)
(xp) = γ (xp), p = 1, . . . , n, (2.10)

where we express αλ
n(x), x ∈ � on a set {�m} of finite elements for m = 1, . . . , N
 such that⋃N


m �m = � as follows:

αλ
n(x) =

n∑
k=1

akLk(x). (2.11)

Equivalently, the collocation method can be interpreted as a projection with the interpolation
operator Pn : Y → Yn defined by [13]

Pnf (x) :=
n∑

p=1

f (xp)Lp(x), x ∈ �, (2.12)

for all f ∈ Y . Then, (2.10) is equivalent to

PnKαλ
n = Pnγ. (2.13)

Let ψ be the interpolant of αλ [5] and assume that αλ ∈ H 1(�). Then, the interpolation
error eα = αλ − ψ on each finite element �m is bounded by

‖eα‖0,m � C‖αλ‖1,mhm, (2.14)



1140 M Guven et al

where C is a positive constant and hm is the diameter of the smallest ball that contains the mth
element �m.

Theorem 1 describes the effect of inverse problem discretization on the accuracy of the
reconstructed optical absorption image.

Theorem 1. Let gj , g
∗
i be the solutions of the variational formulations of the boundary value

problems (2.1)–(2.2) and (2.3)–(2.4), respectively. The error between the solution αλ of (2.6)
and the solution αλ

n of (2.13) is bounded by

∥∥αλ − αλ
n

∥∥
L1(�)

� C
√

V�‖I − Tn‖Y→Xn

N
∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn

max
i,j

‖g∗
i gj‖L1(�)

N
∑
m=1

Nd,Ns∑
i,j

‖g∗
i gj‖0,m‖αλ‖1,mhm, (2.15)

where C is a positive constant, V� is the volume of �, Tn : Y → Xn is a uniformly bounded
operator given by Tn = (I + 1

λ
PnA∗

aAa

)−1Pn [9].

Proof. See [9]. �

2.3. Effect of forward problem discretization

Let
{
�

j
m

}
denote the set of linear elements used to discretize the variational formulation of

the boundary value problem (2.1)–(2.2) for m = 1, . . . , N
j


; such that
⋃N

j




m �
j
m = �, and

h
j
m be the diameter of the smallest ball that contains the element �

j
m in the finite-dimensional

solution Gj , for all j = 1, . . . , Ns [9]. Similarly, let
{
�i

n

}
denote the set of linear elements

used to discretize the variational formulation of the boundary value problem (2.3)–(2.4) for

n = 1, . . . , N∗i

 ; such that

⋃N∗i



n �i
n = �, and hi

n be the diameter of the smallest ball that
contains the element �i

n in the finite-dimensional solution G∗
i , for all i = 1, . . . , Nd [9]. Then,

a bound for the discretization error in the finite element solutions Gj and G∗
i with respect

to the solutions gj and g∗
i of the variational formulations of the boundary value problems

(2.1)–(2.2) and (2.3)–(2.4) on each finite element can be given by [5]

‖gj − Gj‖0,mj � C‖gj‖1,mj hj
m, (2.16)

‖g∗
i − G∗

i ‖0,ni � C‖g∗
i ‖1,ni hi

n, (2.17)

where C is a positive constant, and ‖·‖0,mj (‖·‖0,ni ) and ‖·‖1,mj (‖·‖1,ni ) are respectively the L2

and H 1 norms on �
j
m

(
�i

n

)
.

Consider the inverse problem

K̃α̃λ = γ̃ , (2.18)

where K̃ and γ̃ are the finite dimensional approximations to K and γ , obtained by substituting
gj and g∗

i in Hi,j and H ∗
i,j by Gj and G∗

i , respectively.
Theorem 2 shows the effect of forward problem discretization on the accuracy of the

reconstructed optical absorption image.

Theorem 2. A bound for the error between the solution αλ of (2.6) and the solution α̃λ of
(2.18) due to approximations K̃ and γ̃ is given by
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‖αλ − α̃λ‖L1(�) � C

λ
max
i,j

‖g∗
i gj‖L1(�)


 Nd∑

i=1

N∗i

 ,Ns∑
n,j

(2‖gjα
λ‖0,ni + ‖α‖∞‖gj‖0,ni )‖g∗

i ‖1,ni hi
n

+
Ns∑

j=1

N
j


,Nd∑
m,i

(2‖g∗
i α

λ‖0,mj + ‖α‖∞‖g∗
i ‖0,mj )‖gj‖1,mj hj

m


 , (2.19)

where C is a positive constant.

Proof. See [9]. �

We refer to part I [9] for further details of the discussion regarding the definition and
discretization of the forward and inverse problems. In the following, we discuss the adaptive
mesh generation for the forward and inverse problems.

3. Adaptive mesh generation

In this section, we discuss the adaptive mesh design for the discretization of the forward and
inverse problems based on theorems 1 and 2. For each problem, we present an adaptive mesh
generation algorithm, which is followed by the corresponding computational cost analysis.

3.1. Adaptive mesh generation for the forward problem

Let the mesh parameter h
j
m for Gj, j = 1, . . . , Ns , and the mesh parameter hi

n for
G∗

i , i = 1, . . . , Nd be chosen so that

hj
m � εf∑Nd

i=1(2‖g∗
i α

λ‖0,mj + ‖α‖∞‖g∗
i ‖0,mj )‖gj‖1,mj

:= Bm
j , (3.20)

hi
n � εf∑Ns

j=1(2‖gjαλ‖0,ni + ‖α‖∞‖gj‖0,ni )‖g∗
i ‖1,ni

:= B∗n
i , (3.21)

where the tolerance εf will be defined later. Then, by theorem 2, the error in the reconstructed
image due to the forward problem discretization is bounded by

C

λ
max
i,j

‖g∗
i gj‖L1(�)


 Ns∑

j=1

N
j


 +
Nd∑
i=1

N∗i




 εf = ε̃f , (3.22)

where C is a positive constant and ε̃f is the total allowable error in the reconstructed optical
image due to the forward problem discretization. Equation (3.22) implies the following value
for εf :

εf = λε̃f /C

maxi,j‖g∗
i gj‖L1(�)

1( ∑Ns

j=1 N
j


 +
∑Nd

i=1 N∗i



) . (3.23)

Algorithm 1 outlines the adaptive mesh generation algorithm for the forward problem in
the form of a pseudocode. The algorithm is performed for each source and detector before the
linearization of the inverse problem and it yields a family of adaptively refined meshes with
conforming elements. We use Rivara’s algorithm [15] for refinement.
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Algorithm 1. The pseudocode for the mesh generation algorithm for the forward problem,
prior to the linearization of the inverse problem.

	 Generate an initial uniform mesh (
,N
), 
 = ⋃N


e=1{
e}
	 Set εf

	 Initialize the set of marked elements: Me ← {}
	 flag = True

while flag = True

for each element 
e ∈ 
with mesh parameter h
j
e

(
hi

e

)
if first linearization

� Use analytical solutions for gj and g∗
i and a priori anatomical

information about α to compute the bound Bm
j in (3.20) (B∗n

i in (3.21))
else

� Use current solution updates Gj and G∗
i and α̃λ

n

to compute Bm
j in (3.20) (B∗n

i in (3.21))
end

if h
j
e > Bm

j

(
hi

e > B∗n
i

)
� Me ← Me

⋃{
e}
end

end
if Me �= {}

� Refine the marked elements and update the mesh 


� Me ← {}
else

� flag = False
end

end
	 Solve for Gj (G∗

i ).

Remark 1.

(i) In practice, Bm
j and B∗n

i in (3.20)–(3.21) cannot be computed since α, αλ, gj and g∗
i

are unknown. However, Bm
j and B∗n

i can be estimated by using approximations for the
functions involved in these bounds, based on either a priori information or on the recent
forward and inverse problem solution updates. Then, the elements whose mesh parameter
h

j
m

(
hi

n

)
exceeds Bm

j

(
B∗n

i

)
can be determined and refined.

(ii) After the first sweep of refinement, one can compute the bound Bm
j and B∗n

i only for
the new elements. We note that for the initial mesh design, we use a model problem
to compute the terms in the error bound relevant to the forward problem solution (see
appendix). If there is no a priori information, αλ can be assumed to be spatially constant
at the first linearization step. After the first linearization, the norms in Bm

j and B∗n
i

relevant to gj and g∗
i are not expected to change significantly. In this context, the terms

‖g∗
i α

λ‖0,mj , ‖gjα
λ‖0,ni in (3.20) and (3.21) can be bounded by ‖g∗

i ‖0,mj ‖αλ‖∞,mj and
‖gj‖0,ni ‖αλ‖∞,ni , respectively. Therefore, one can store the norms ‖gj‖0,ni and ‖g∗

i ‖0,mj

at the end of the first mesh generation, and update Bm
j and B∗n

i in the following mesh
generations by using these stored values and the updated αλ values.
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(iii) In case εf cannot be chosen in prior, we consider a posterior approach, set εf = 1, and
compute h

j
m

/
Bm

j

(
hi

n

/
B∗n

i

)
on each element, which is used as the indicator for refinement.

Then, the elements with indicator value exceeding the average h
j
m

/
Bm

j

(
hi

n

/
B∗n

i

)
quantity

are marked for refinement. We note that in this case, the algorithm has to be stopped
when the number of nodes in the mesh exceeds the allowable number of nodes.

3.2. Computational cost of the adaptive mesh generation algorithm for the forward problem

Consider the algorithm described in remark 1(iii) for � ⊂ R
2. Using triangular finite elements

with first-order Lagrange basis functions and an analytical (exact) integration on each finite
element, the number of multiplications required to compute the L2 or H 1 norm of a finite-
dimensional function on each triangular element �j

m

(
�i

n

)
is 12. On the other hand, computing

the norm ‖gjα
λ‖0,ni (‖g∗

i α
λ‖0,mj ) takes ten times the number of multiplications to compute

‖gj‖1,mj (‖g∗
i ‖1,ni ). As a result, the total number of multiplications required to compute

the error estimates on all finite elements for the j th source is given by (132Nd + 16)N
j


.
Similarly, the total number of multiplications required to compute the error estimates on all
finite elements for the ith detector is equal to (132Ns + 16)N∗i


 .
In order to reduce the computational cost of the proposed adaptive mesh generation

algorithm, we can approximate the bounds Bm
j in (3.20) and B∗n

i in (3.21) as follows:

Bm
j ≈ 1(

2
∥∥ ∑Nd

i=1 g∗
i α

λ
∥∥

0,mj + ‖α‖∞
∥∥∑Nd

i=1 g∗
i

∥∥
0,mj

)‖gj‖1,mj

(3.24)

B∗n
i ≈ 1(

2
∥∥ ∑Ns

j=1 gjαλ
∥∥

0,ni + ‖α‖∞
∥∥ ∑Ns

j=1 gj

∥∥
0,ni

)‖g∗
i ‖1,ni

. (3.25)

Then, the number of multiplications required to compute the error estimates on all finite
elements becomes 148N

j




(
148N∗i




)
, which implies a significant reduction as compared to

(132Nd + 16)N
j




(
(132Ns + 16)Ni∗




)
.

If one uses the discretization error estimates (2.16)–(2.17) to generate adaptive meshes
for the discretization of (2.1)–(2.2) and (2.3)–(2.4), the number of multiplications is equal
to 13N

j


 and 13N∗i

 , respectively. Then, the resulting adaptive meshes will lead to finite

element solutions Gj and G∗
i with reduced discretization error. However, reduction in the

discretization error in Gj and G∗
i may not ensure the accuracy of the reconstructed absorption

image (see simulation experiment 3).

3.3. Adaptive mesh generation for the inverse problem:

Let the mesh parameter hm for the solution of the inverse problem be defined as follows:

hm � εinv

/(√
V�‖I − Tn‖Y→Xn

‖αλ‖1,m +
1

λ
‖Tn‖Y→Xn

× max
i,j

‖g∗
i gj‖L1(�)

Nd ,Ns∑
i,j

‖g∗
i gj‖0,m‖αλ‖1,m

)
:= Bm

inv. (3.26)

Then, by theorem 1, the error in the reconstructed image due to inverse problem discretization
is bounded by

CN
εinv = ε̃inv, (3.27)
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where C is a positive constant and ε̃inv is the total allowable error in the reconstructed optical
image due to inverse problem discretization.

We present the pseudocode for our adaptive mesh generation algorithm used at each
linearization of the inverse problem in algorithm 2. Similar to the forward problem
discretization, we use Rivara’s algorithm [15] for the refinement of the elements.

Algorithm 2. The pseudocode for the mesh generation algorithm at every linearization step
of the inverse problem.

	 Generate an initial uniform mesh (
,N
), 
 = ⋃N


m=1{
m}
	 Set εinv

	 Initialize the set of marked elements: Me ← {}
	 flag = True

while flag = True
for each element 
m ∈ 
 with mesh parameter hm

if first linearization
� Use current solution updates Gj and G∗

i and a priori information
about α to compute Bm

inv in (3.26)
else

� Use current solution updates Gj and G∗
i and α̃λ

n

to compute Bm
inv in (3.26)

end
if hm > Bm

inv

� Me ← Me

⋃{
m}
end

end
if Me �= {}

� Refine the marked elementsand update themesh 


� Me ← {}
else

� flag = False
end

end
	 Solve for α̃λ

n .

Remark 2.

(i) In practice, Bm
inv in (3.26) cannot be computed since αλ, gj , g

∗
i and Tn are unknown.

Similar to the approach described in section 3.1, we can compute an estimate for Bm
inv by

using the uniform boundedness of the operator Tn [9] and by using approximate values
for the functions involved in Bm

inv. In this context, we use either a priori information or the
recent forward and inverse problem solution updates to calculate (3.26) on each element.
Then, the elements with the mesh parameter hm > Bm

inv are determined and refined.
(ii) In order to save computations, after the first sweep of refinement, one can compute the

bound Bm
inv only for the new elements. Furthermore, similar to the approach described

in section 3.1, the term ‖g∗
i gj‖0,m in (3.26) can be stored after the first mesh generation

and can be used in the following mesh generations. In this context, the bound Bm
inv can be

updated by using only the updated ‖αλ‖1,m value.
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(iii) Note that, in practice, one of the two terms in the denominator of Bm
inv will be dominant

depending on the value of λ. Thus, we consider only the dominant term for the
computation of Bm

inv. In case εinv cannot be chosen in prior, we consider a posterior
approach, set εinv = 1 and compute ‖αλ‖1,mhm or

∑Nd,Ns

i,j ‖g∗
i gj‖0,m‖αλ‖1,mhm on each

element, which are used as the refinement indicators. Then, the elements with indicator
value which exceeds the average indicator value are refined. In this case, the algorithm
has to be stopped when the number of nodes in the mesh exceeds the allowable number
of nodes.

3.4. Computational cost of the adaptive mesh generation algorithm for the inverse problem

Consider the algorithm stated in remark 2(iii) for � ⊂ R
2 and assume that the second term in

the denominator of Bm
inv (3.26) is dominant. Using triangular finite elements with first-order

Lagrange basis functions and an analytical (exact) integration on each finite element, the total
number of multiplications required to compute the error estimates on all finite elements is
given by (120NdNs + 14)N
.

In order to reduce the number of multiplications, we can consider an approximation for
Bm

inv as follows:

Bm
inv ≈ 1∥∥∑Nd,Ns

i,j g∗
i gj

∥∥
0,m

‖αλ‖1,m

. (3.28)

Then, the number of multiplications reduces to 134N
.
If one uses the interpolation error estimate (2.14) to generate adaptive meshes, the number

of multiplications to compute the error estimates on all finite elements will be 13N
. However,
such adaptive meshes may not help reduce the error in the reconstructed optical images,
resulting from discretization (see simulation experiment 3).

4. Numerical experiments

We conduct a series of numerical experiments to demonstrate the implications of theorems 1
and 2, and to present the effectiveness of the proposed adaptive mesh generation algorithms.
We perform our experiments in 2D for ease of comparison.

In the first simulation, we consider a series of image reconstructions to show the
effectiveness of the proposed adaptive mesh generation algorithms. In this context, we
compare the images reconstructed by using uniform meshes for the forward and inverse
problems to the images reconstructed by using adaptive meshes which are designed based on
theorems 1 and 2.

In the second simulation, we show the effect of the heterogeneity size on the accuracy of
the reconstructed absorption images. Next, we demonstrate how this error can be addressed
by the proposed adaptive discretization schemes.

In the final simulation study, we demonstrate the implication of theorem 2 and show
that meshes generated for the forward problem by using discretization error estimates which
disregard the interaction between the solutions gj , g

∗
i and αλ can lead to unstable image

reconstructions. We note that the proposed adaptive mesh generation algorithm for the forward
problem addresses this problem.

Note that in all experiments, we use triangular finite elements with first-order Lagrange
basis functions. We apply Gaussian elimination method to solve the discrete forward problem
resulting from the variational formulation [5] of the boundary value problems (2.1)–(2.2)
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(a) (b) (c)

Figure 1. The setups used for the simulation studies 1, 2 and 3. The squares and triangles denote
the detectors and sources, respectively. (a) The optical domain and source–detector configuration
for simulation study 1. (b) The optical domain and source–detector configuration for simulation
study 2. r1 = 0.50 cm, r2 = 0.75 cm, r3 = 1.0 cm and r4 = 1.25 cm. (c) The optical domain and
source–detector configuration for simulation study 3. The radius of the circles is 0.75 cm.

and (2.3)–(2.4) [9]. For the inverse problem, we consider the discrete problem obtained by
projecting (2.18) by the collocation method [9]:

PnK̃α̃λ
n = Pnγ̃ , (4.29)

where the regularization parameter is chosen as small as possible, yet large enough to enable
robust image reconstructions. In this respect, an appropriate value for the regularization
parameter is chosen based on experience. The discrete inverse problem (4.29) is solved using
Gaussian elimination as well.

4.1. Simulation study 1

In this simulation study, we consider the geometry shown in figure 1(a). We simulate the
optical data by solving the diffusion equation at ω = 0 on a fine uniform grid with 81 nodes
along the x and y directions, where the refractive index mismatch parameter a = 3.11 sources
and 11 detectors are evenly spaced on the bottom and top edges of the square, respectively.
The diffusion coefficient D(x) = 0.0410 for x ∈ � ∪ ∂�. The circular heterogeneity with
absorption coefficient µa = 0.2 cm−1 is embedded in an optically homogeneous background
with µa = 0.04 cm−1.

In order to obtain a series of absorption imaging problems using the same setup, we
consider five values for the background absorption value. Then, for each imaging problem,
we consider three mesh scenarios: uniform mesh for both forward and inverse problems;
adaptive mesh for the forward problem and uniform mesh for the inverse problem; and
adaptive meshes for both forward and inverse problems. We refer to table 2 for a brief outline
of the first simulation study.

The uniform mesh used for the forward problem discretization has 625 nodes and is
shown in figure 2(a). The uniform mesh for the inverse problem has 313 nodes and is shown in
figure 2(b). We use the algorithms described in section 3.1 and remark 1(iii), and section 3.3
remark 2(iii) to generate the adaptive meshes for the forward and inverse problems,
respectively. The number of nodes in each of the adaptive meshes used for the forward problem
does not exceed 750. An example for the adaptive mesh generated for a source located at
(1.0, 0) is shown in figure 2(c). The adaptive mesh for the inverse problem generated for the
case where the background µa = 0.050 cm−1 has 418 nodes and is shown in figure 2(d).
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Figure 2. Examples of meshes used in the first simulation study. (a) The uniform mesh with 625
nodes. (b) The uniform mesh with 313 nodes. (c) The adaptive mesh generated for the forward
problem for the source located at (1.0,0): background µa = 0.050 cm−1. (d) The adaptive mesh
generated for the inverse problem solution, with 418 nodes. Background µa = 0.050 cm−1.

Table 2. The mesh scenarios and the background µa values in simulation study 1.

Mesh (forward) Mesh (inverse) Background µa (cm−1)

Uniform Uniform 0.032, 0.036, 0.040, 0.044, 0.050
Adaptive Uniform 0.032, 0.036, 0.040, 0.044, 0.050
Adaptive Adaptive 0.032, 0.036, 0.040, 0.044, 0.050

For the inverse problem, we set the regularization parameter λ to 10−7 in all experiments to
eliminate the dependence of the error estimates (2.15)–(2.19) on the regularization parameter.
We consider the image reconstructed by using fine uniform meshes (61 × 61 nodes for the
forward problem and 61×61 nodes for the inverse problem) as the reference image αλ, which
is assumed to possess no error due to discretization. We compute the error

∥∥αλ − α̃λ
n

∥∥
L1(�)

for each image reconstruction and tabulate the results in table 3. We see that the error in
the images reconstructed by using uniform meshes for both forward and inverse problems is
significantly reduced by the use of adaptively refined meshes. A similar behaviour is observed
for all choices of background absorption value.
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(a) (b)

(c) (d)

Figure 3. The reconstruction results of simulation study 1, with the background µa = 0.032 cm−1.
(a) The optical absorption image used as the reference for error computations. (b) The reconstructed
absorption image using the uniform mesh in figure 2(a) for the forward, and the uniform mesh in
figure 2(b) for the inverse problem. (c) The reconstructed absorption image using an adaptive mesh
for the forward, and the uniform mesh in figure 2(b) for the inverse problem. (d) The reconstructed
absorption image using an adaptive mesh for the forward, and the adaptive mesh in figure 2(d) for
the inverse problem.

Table 3. The error ‖αλ − α̃λ
n‖L1(�) for each experiment described in the simulation study 1 and

table 2. The first column shows the type of the meshes used in the forward and inverse problems,
respectively. The unit of background µa is cm−1.

Background µa : 0.032 0.036 0.040 0.044 0.050

Uniform–uniform ‖αλ − α̃λ
n‖L1(�) : 0.2325 0.2559 0.2773 0.2932 0.3013

Adaptive–uniform ‖αλ − α̃λ
n‖L1(�) : 0.1238 0.1139 0.1166 0.1209 0.1278

Adaptive–adaptive ‖αλ − α̃λ
n‖L1(�) : 0.1043 0.0997 0.0998 0.1003 0.1009

We present image reconstructions in figures 3 and 4 for the two extreme cases, where
the background absorption value is equal to 0.032 and 0.050 cm−1, respectively. Figures 3(a)
and 4(a) display the reference images used to compute the error values given in table 3.



Effect of discretization error and adaptive mesh generation in diffuse optical tomography: II 1149

Figure 4. The results of simulation study 1, with the background µa = 0.050 cm−1. (a) The
optical absorption image used as the reference for error computations. (b) The reconstructed
absorption image using the uniform mesh in figure 2(a) for the forward, and the uniform mesh in
figure 2(b) for the inverse problem. (c) The reconstructed absorption image using an adaptive mesh
for the forward, and the uniform mesh in figure 2(b) for the inverse problem. (d) The reconstructed
absorption image using an adaptive mesh for the forward, and the adaptive mesh in figure 2(d) for
the inverse problem.

Figures 3(c) and (d) show that the optical heterogeneity is resolved better by using adaptive
meshes as compared to the reconstructed image obtained by using uniform meshes, which is
shown in figure 3(b). These results are consistent with the error values given in table 3. A
similar trend is seen in figures 4(c) and (d). Note that the number of nodes in the adaptive
meshes is almost equal to the number of nodes that the uniform meshes have. In figure 5,
we show the cross-sectional views from the reconstructed images. We see that the use of
coarse uniform meshes fails to resolve the circular heterogeneity especially for the case in
which the background µa = 0.032 cm−1.

4.2. Simulation study 2

In this study, we consider the geometry shown in figure 1(b). To simulate the optical data,
we use the same source–detector configuration considered in the first simulation study. We
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Figure 5. The cross-sectional views from the reconstructed images in simulation study 1,
corresponding to the cases where the background µa = 0.032 and µa = 0.050 cm−1, respectively.
(a) The cross-sectional cuts taken from figures 3(a), (b) and (d), along the x-direction at y = 3.
The solid, square and diamond lines correspond to the cross-sectional cuts taken from the images
shown in figures 3(a), (b) and (d), respectively. (b) The cross-sectional cuts taken from figures 4(a),
(b) and (d), along the x-direction at y = 3. The solid, square and diamond lines correspond to the
cross-sectional cuts taken from the images shown in figures 4(a), (b) and (d), respectively.

simulate the optical data by solving the diffusion equation at ω = 0 on a fine uniform grid
with 81 nodes along the x and y directions, where the refractive index mismatch parameter
a = 3. The diffusion coefficient D is assumed to be constant and D(x) = 0.0410 cm, for all
x ∈ � ∪ ∂�.

We consider four different radii for the circular heterogeneity with µa = 0.20 cm−1

embedded in a background with µa = 0.040 cm−1 as shown in figure 1(b). For each case, we
compute the error for different mesh scenarios, similar to the first simulation study: uniform
mesh for both forward and inverse problems; adaptive mesh for the forward problem and
uniform mesh for the inverse problem; and adaptive meshes for both forward and inverse
problems. The adaptive meshes for this simulation study were generated based on theorems 1
and 2, and the mesh generation algorithms described in the first simulation study and section 3.
The uniform meshes used for the forward and inverse problems are identical to those used in
the first simulation study. We note that the number of nodes in the adaptive meshes generated
for the forward and inverse problems is close to the number of nodes in the corresponding
uniform meshes.

In table 4, we tabulate the error norm
∥∥αλ − α̃λ

n

∥∥ obtained for each heterogeneity size
with different mesh choices, where αλ is the reference image reconstructed by using fine
uniform meshes as in the first study. Table 4 shows that the error increases with increasing
heterogeneity size. We see that the reduction in the error as a result of using adaptive meshes
is more significant for smaller sized heterogeneities. Further reduction in the error norm∥∥αλ − α̃λ

n

∥∥ is possible by increasing the number of nodes in the meshes.
For brevity, we only show the reconstruction results for the extreme cases: r = 0.5 cm and

r = 1.25 cm. We note that the regularization parameter λ = 5 × 10−9 in all reconstructions.
Figures 6(a) and (b) show the images used as the reference images αλ in the calculation of
the error norms

∥∥αλ − α̃λ
n

∥∥ listed in table 4. Figures 6(e)–(f) show that the adaptive meshes
reduce the artefacts as compared to the images reconstructed by using uniform meshes, which
are shown in figures 6(c)–(d).
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Table 4. The L1 norm of αλ and the error ‖αλ − α̃λ
n‖L1(�) for each experiment described in the

simulation study 2. The first column shows the type of the meshes used in the forward and inverse
problems, respectively. The radius of the circular heterogeneity is given in cm.

Radius: 0.50 0.75 1.0 1.25

‖αλ‖L1(�): 0.7196 1.3760 1.4759 1.7817
Uniform–uniform ‖αλ − α̃λ

n‖L1(�): 0.5622 0.5706 0.5850 0.6337

Adaptive–uniform ‖αλ − α̃λ
n‖L1(�): 0.2153 0.2776 0.3766 0.5113

Adaptive–adaptive ‖αλ − α̃λ
n‖L1(�): 0.2020 0.2630 0.3592 0.5034

4.3. Simulation study 3

In this simulation study, we consider the geometry shown in figure 1(c). The centre of
the circular heterogeneity is moved vertically towards the detector side to see the effect on
the imaging accuracy. Next, we show how the error in the reconstructed images due to
discretization can be addressed by using appropriate meshes for the solutions of the forward
and inverse problems. In this context, we compare the results obtained by using (1) uniform
meshes, (2) the adaptive meshes generated using conventional a priori discretization error
estimates, and (3) the adaptive meshes proposed in this study. By conventional error estimates,
we mean the a priori discretization error estimates (2.16) and (2.17) for the solution of the
forward problem, and the a priori interpolation error estimate (2.14) for the solution of the
inverse problem.

To simulate the optical data, we use the same source–detector configuration considered
in the first simulation study. We simulate the optical data by solving the diffusion equation at
ω = 0 on a fine uniform grid with 81 nodes along the x and y directions, where the refractive
index mismatch parameter a = 3. We note that, in all reconstructions, the background
absorption value is set to µa = 0.04 cm−1 and the diffusion coefficient D is assumed to be
constant and D(x) = 0.0410 cm, for all x ∈ � ∪ ∂�.

The uniform meshes used in this simulation study are identical to those used in simulation
studies 1 and 2. Sample meshes for the forward problem solution using the conventional and
the proposed adaptive meshing strategies are shown in figures 7(a) and (b) and figures 8(c)
and (d), respectively. We see that the conventional adaptive mesh generation strategy leads to
meshes refined around only sources or detectors, but not both. In contrast, figures 8(c) and (d)
show that the proposed strategy results in adaptive meshes refined around sources, detectors
and the heterogeneity as well. This observation is consistent with theorem 2. The adaptive
mesh for the inverse problem solution, which was generated using the a priori interpolation
error estimate (2.14), is shown in figure 8(f). Note that the mesh was generated for the
case where the circular heterogeneity was centred at (3.0, 3.5). The mesh generated based
on theorem 1 (figure 8(e)) provides higher resolution close to the sources and detectors as
compared to the mesh shown in figure 8(f), which is merely refined around the heterogeneity.

In this simulation study, we consider four different positions for the centre of the circular
heterogeneity with radius 0.75 cm, along the y-axis: centre at (3.0, 3.0), (3.0, 3.5), (3.0,
4.0) and (3.0, 4.5), respectively. Similar to the previous simulations, we compute the error
in the reconstructed images for all cases, and compare the error values attained by different
meshing strategies. Finally we present the reconstructed images obtained by using different
mesh strategies corresponding to the case where the circular inclusion is centred at (3.0, 3.5)

and (3.0, 4.0).



1152 M Guven et al

(a) (b)

(c) (d)

(e) (f)

Figure 6. The results of simulation study 2. The left and right columns show the reconstructed
images regarding the optical heterogeneity with radius 0.50 cm and 1.25 cm, respectively. The
background µa = 0.040 cm−1 in all of the reconstructions. The reference images shown in
(a) and (b) are obtained using a uniform mesh with 61 × 61 nodes in both the forward and inverse
problems. ((a) and (b)) The optical absorption images used as the reference for error computations.
The images correspond to the reconstruction of the circular heterogeneities of radii 0.5 cm and
1.25 cm, respectively. ((c) and (d)) The reconstructed absorption images using the uniform mesh
in figure 2(a) for the forward, and the uniform mesh in figure 2(b) for the inverse problem.
((e) and (f)) The reconstructed absorption image using adaptive meshes for both the forward and
the inverse problems.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. ((a) and (b)) Samples of adaptive meshes in the third simulation study (with 865 nodes
for the source and the detector located at (2.0, 0) and (4.0, 6.0), respectively), generated by using the
conventional error estimates (2.16) and (2.17), which led to unstable optical image reconstruction
shown in (c) to (f), for the circular heterogeneity centred at (3.0, 3.5). ((c) and (d)) The unstable
optical image reconstructions in the third simulation study, obtained by using the adaptive meshes
for the forward problem solution whose examples are shown in (a) and (b) (λ = 10−8). ((e) and
(f)) The unstable optical image reconstructions in the third simulation study, obtained by using the
adaptive meshes for the forward problem solution whose examples are shown in (a) and (b). λ was
set to 10−6 to suppress the significantly large artefacts observed in (c) and (d).

Using the meshes for the forward problem discretization (see figures 7(a) and (b)),
which were generated by using the conventional a priori discretization error estimates
(2.16)–(2.17), leads to the image reconstructions shown in figures 7(c) and (d), where the
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Figure 8. Samples of adaptive meshes used in the third simulation study, which led to the optical
image reconstructions shown in figure 10. The meshes were generated for the circular heterogeneity
centred at (3.0, 4.0). (a) The adaptive mesh with 942 nodes for the forward problem solution for
the source located at (2.0, 0), obtained by refining the adaptive mesh shown in figure 7(a) around
the detectors. (b) The adaptive mesh with 955 nodes for the forward problem solution for the
detector located at (4.0, 6.0), obtained by refining the adaptive mesh shown in figure 7(b) around
the sources. (c) The adaptive mesh with 895 nodes for the forward problem solution for the source
located at (2.0, 0), generated based on theorem 2. (d) The adaptive mesh with 896 nodes for the
forward problem solution for the detector located at (4.0, 6.0), generated based on theorem 2.
(e) The adaptive mesh with 691 nodes for the inverse problem solution, generated based on
theorem 1. (f) The adaptive mesh with 609 nodes for the inverse problem solution, generated based
on the conventional error estimate (2.14).
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regularization parameter λ = 10−8. We observe that the finite-dimensional operator does
not provide a stable solution. We note that using an adaptive mesh for the inverse problem
solution does not change the outcome (figure 7(d)). Note also that the meshes generated by
using the conventional a priori discretization error estimates (2.16)–(2.17) are sufficient to
provide accurate finite element approximations to the actual solutions gj and g∗

i . Therefore,
the unstable reconstructions can be attributed to the errorsK−K̃ and γ −γ̃ , due to inappropriate
discretization as noted by theorem 2. In consistence with theorem 2, this observation suggests
that solving the forward problem accurately does not necessarily imply that approximate
operator K̃ and γ̃ are error-free. Therefore, in order to address such problems, one has to
follow a discretization scheme based on theorem 2 for the solution of the forward problem,
which takes into account the interaction between the solutions of the diffusion equation and
the associated adjoint problem, as described in section 3.1.

In order to suppress the severe artefacts observed in figures 7(c) and (d), we increased
the regularization parameter and set λ = 10−6. The resulting images are shown in
figures 7(e) and (f). As noted by theorems 1 and 2, increasing the regularization parameter
reduces the error in the reconstructed images. However, increasing the regularization
parameter will also compromise the image quality and lead to over-smoothed images. In
order to address the instability issue without degrading the image quality by using high
regularization parameters, we modified the adaptive mesh generation method that leads to the
meshes shown in figures 7(a) and (b). In this context, for the first 2 refinements, we used
the proposed mesh generation algorithm based on theorem 2 to generate an initial adaptive
mesh; and for the next two refinements, we used the conventional error estimates (2.16)–
(2.17). Following this modification, the samples of the resulting adaptive meshes are shown in
figures 8(a) and (b). For a comparison, we also present in figures 8(c) and (d), the adaptive
meshes generated by using the proposed adaptive mesh generation algorithms as described
in section 3.1 and remark 1(iii). We observe that the meshes shown in figures 8(c) and
(d), indicate further refinement around sources, detectors and the circular heterogeneity as
compared to the adaptive meshes shown in figures 8(a) and (b).

Examples of the adaptive meshes generated for the inverse problem based on theorem 1
and the conventional a priori interpolation estimate (2.14) are shown in figures 8(e) and
(f), respectively. We observe that the adaptive mesh shown in figure 8(e) provides higher
resolution around sources and detectors as compared to the adaptive mesh shown in
figure 8(f).

We note that the uniform meshes used in this simulation study are identical to those used
in the previous simulation studies.

In order to compare the performance of the conventional and proposed adaptive mesh
strategies, we perform four experiments and compute the error in the reconstructed optical
absorption images. For each experiment, we consider five different mesh strategies and refer
to table 5 for the description of these experiments.

We show the reconstructed optical absorption images for the two cases in figures 9 and 10,
corresponding to the circular heterogeneity centred at (3.0, 3.5) and (3.0, 4.0), respectively.
Figures 9(a) and 10(a) show the reference absorption image reconstructions which are used to
compute the error in the reconstructed optical images.

Figure 9(b) shows the image reconstructed using coarse uniform meshes for both the
forward and inverse problems, for the case where the circular inclusion is centred at (3.0,
3.5) where the regularization parameter was set to λ = 10−8. With the same value of the
regularization parameter, figure 9(c) shows the reconstructed image by using the adaptive
mesh based on theorem 2 for the forward problem and the coarse uniform mesh (shown in
figure 2(b)) for the inverse problem. Figure 9(e) shows the reconstructed image obtained
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Table 5. The relevant parameters in experiments 1–5 in simulation study 3. The abbreviation
‘Conv.’ implies that the corresponding mesh was generated using the conventional a priori
discretization error estimates (2.16)–(2.17) for the forward problem solution, and the conventional
a priori interpolation error estimate (2.14) for the inverse problem solution. The abbreviation
‘Prop.’ refers to the adaptive meshes generated by using the proposed adaptive mesh generation
algorithms based on theorems 1 and 2, for the inverse and forward problem solutions, respectively.
The last column in the table shows the coordinates of the centre of the circular heterogeneity,
considered in each experiment.

Mesh (forward) Mesh (inverse) Centre at:

Exp. 1 Uniform Uniform [(3.0, 3.0), (3.0, 3.5), (3.0, 4.0), (3.0, 4.5)]
Exp. 2 Adaptive (Conv.) Uniform [(3.0, 3.0), (3.0, 3.5), (3.0, 4.0), (3.0, 4.5)]
Exp. 3 Adaptive (Conv.) Adaptive (Conv.) [(3.0, 3.0), (3.0, 3.5), (3.0, 4.0), (3.0, 4.5)]
Exp. 4 Adaptive (Prop.) Uniform [(3.0, 3.0), (3.0, 3.5), (3.0, 4.0), (3.0, 4.5)]
Exp. 5 Adaptive (Prop.) Adaptive (Prop.) [(3.0, 3.0), (3.0, 3.5), (3.0, 4.0), (3.0, 4.5)]

Table 6. The error ‖αλ − α̃λ
n‖L1(�) for each experiment described in the simulation study 3. The

first column shows the type of the meshes used in the forward and inverse problems, respectively.
The superscript ‘C’ denotes that the corresponding adaptive mesh generation is based on the
conventional a priori error estimates (2.16)–(2.17) and (2.14).

Radius at: (3.0, 3.0) (3.0, 3.5) (3.0, 4.0) (3.0, 4.5)

Uniform–uniform ‖αλ − α̃λ
n‖L1(�): 0.4539 0.4606 0.4733 0.4956

Adaptive–uniform ‖αλ − α̃λ
n‖L1(�): 0.2690 0.2695 0.2634 0.2507

Adaptive–adaptive ‖αλ − α̃λ
n‖L1(�): 0.2433 0.2455 0.2459 0.2434

Adaptive–uniform ‖αλ − α̃λ,C
n ‖L1(�): 0.7989 0.7596 0.7072 0.6418

Adaptive–adaptive ‖αλ − α̃λ,C
n ‖L1(�): 0.8011 0.7614 0.7070 0.6351

by using the adaptive meshes based on theorems 1 and 2. We observe the improvements
especially around the boundaries. Using the conventional adaptive meshes for the forward
problem solution, which were modified around sources and detectors as noted before, we
ran into a similar instability problem. Therefore, in order to obtain better reconstructions
with the conventional adaptive meshes, we set the regularization parameter λ = 10−7 in the
corresponding inverse problem formulations. The resulting reconstructed images are shown
in figures 9(c) and (f). In this case, we observe that the use of conventional adaptive meshes
for the forward and inverse problems does not improve the image quality as compared to the
reconstructed image shown in figure 9(b), which is obtained by using coarse uniform meshes.

We observe similar results for the case where the circular inclusion is centred at (3.0, 4.0).
We note that the regularization parameter is set to λ = 10−8 for all reconstructions except for
the reconstructions obtained by using conventional adaptive meshes, in which case λ = 10−7.
Figure 9 shows the reconstructed images corresponding to all meshing strategies.

Table 6 shows the error norm αλ − α̃λ
n computations for all cases. Similar to the

previous experiments, αλ is the reference image obtained by using fine uniform meshes
for the discretization of the forward and inverse problems. The error values are consistent
with figures 9 and 10. In all cases, the proposed adaptive meshes significantly reduce the
error in the reconstructed images. Furthermore, the image quality is enhanced by merely
appropriate discretization, without having to increase the regularization parameter. In contrast,
the conventional adaptive meshes perform worse than uniform meshes even though a higher
regularization parameter is used.
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(e) (f)

Figure 9. The reconstructed optical images regarding the circular heterogeneity centred at
(3.0, 3.5) in the third simulation study. (a) The absorption image used as the reference in the
error computations. (b) The reconstructed absorption image using the uniform mesh in figure 2(a)
for the forward, and the uniform mesh in figure 2(b) for the inverse problem. (c) The reconstructed
absorption image using adaptive meshes based on theorem 2 for the forward, and the uniform
mesh in figure 2(b) for the inverse problem. (d) The reconstructed absorption image using adaptive
meshes based on a priori error estimates (2.16) and (2.17) for the forward, and the uniform mesh
in figure 2(b) for the inverse problem. (e) The reconstructed absorption image using adaptive
meshes based on theorem 2 for the forward, and using the adaptive mesh based on theorem 1
for the inverse problem. (f) The reconstructed absorption image using adaptive meshes based on
a priori error estimates (2.16) and (2.17) for the forward, and the interpolation error estimate (2.14)
for the inverse problem.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. The reconstructed optical images regarding the circular heterogeneity centred at
(3.0, 4.0) in the third simulation study. (a) The absorption image used as the reference in the
error computations. (b) The reconstructed absorption image using the uniform mesh in figure
2(a) for the forward, and the uniform mesh in figure 2(b) for the inverse problem. (c) The
reconstructed absorption image using adaptive meshes based on theorem 2 for the forward, and
the uniform mesh in figure 2(b) for the inverse problem. (d) The reconstructed absorption image
using adaptive meshes based on a priori error estimates (2.16) and (2.17) for the forward, and the
uniform mesh in figure 2(b) for the inverse problem. (e) The reconstructed absorption image using
adaptive meshes based on theorem 2 for the forward, and the adaptive mesh based on theorem 1
for the inverse problem. (f) The reconstructed absorption image using adaptive meshes based on
a priori error estimates (2.16) and (2.17) for the forward, and the interpolation error estimate (2.14)
for the inverse problem.
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5. Conclusion

In this work, based on the error analysis presented in part I [9], we developed two new adaptive
mesh generation algorithms, one for the forward and one for the inverse problem, which take
into account the interdependence between the solutions of the two problems. We have also
presented the computational complexity of the presented adaptive mesh generation algorithms.
Our numerical experiments provided a verification of theorems 1 and 2 and showed that the
proposed mesh generation algorithms significantly improve the accuracy of the reconstructed
optical images for a given number of unknowns in the discrete forward and inverse problems.
Conventional error estimates do not include domain-specific factors. As a result, the adaptive
mesh generation algorithms based on conventional error estimates (2.16)–(2.17) and (2.14)
may lead to high errors in reconstructed optical images as demonstrated in our numerical
experiments.

We finally note that the adaptive mesh generation algorithms introduced in this paper can
be adapted for the forward and inverse problems of similar inverse parameter estimation
problems, such as electrical impedance tomography, optical fluorescence tomography,
bioluminescence tomography, microwave imaging etc.
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Appendix. Solution of the model problem

In order to initialize the adaptive mesh for the solution of the forward problem (provided
D(x) = D and µa(x) = µa are spatially constant), we use an analytical solution to compute
the estimates of gj and g∗

i . Below, we give the solution in 2D for (2.1). Under the same
conditions, an analytical solution for the adjoint problem (2.3) can be obtained in a similar
way.

First, we use the polar coordinates (ρ, θ ) to rewrite (2.1):

1

ρ

∂

∂ρ

(
ρ

∂gj

∂ρ

)
+

1

ρ

∂

∂θ

(
ρ

∂gj

∂θ

)
+ K2

�gj = −4π

ρ

δ
(
ρ − ρ

j
s

)
δ
(
θ − θ

j
s

)
D

,

where we consider an unbounded domain, model the point source located at
(
ρ

j
s , θ

j
s

)
by the

Dirac-delta function 4πδ
(
ρ−ρ

j
s

)
δ
(
θ −θ

j
s

)/
ρ and K2

� = −(µac+iω)/cD. Then, the solution

gj at (ρ, θ ) due to the point source located at
(
ρ

j
s , θ

j
s

)
is given by [11]

gj

(
ρ, ρj

s ; θ, θj
s

) = 4

Dπ

{
1

2
I0(k�ρ<)K0(k�ρ>) +

∞∑
m=1

cos[m(θ − θs)]Im(k�ρ<)Km(k�ρ>)

}
,

where ρ< means the smaller of ρ and ρ
j
s , ρ> means the greater of ρ and ρ

j
s , Im and Km are

the modified Bessel functions of the first and second kind, respectively [1] and k� =
√

−K2
�.

The solution of the problem in 3D can be derived in a similar manner [11, 17].
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Abstract— In Diffuse Optical Tomography (DOT), the dis-
cretization error in the numerical solutions of the forward
and inverse problems results in error in the reconstructed
optical images. In this work, based on the analysis presented
in [5], we present two theorems that constitute the basis for
adaptive mesh generation for the forward and inverse DOT
problems. The proposed discretization schemes lead to adaptively
refined composite meshes that yield the desired level of imaging
accuracy while reducing the size of the discretized forward and
inverse problems. Our numerical experiments validate the error
estimates developed in [5] and show that the new adaptive mesh
generation algorithms improve the accuracy of the reconstructed
optical images.

I. INTRODUCTION

Imaging in Diffuse Optical Tomography (DOT) is composed
of two interdependent stages which seek solutions to the
forward and inverse problems. The forward problem deals
with describing the Near Infrared (NIR) light propagation and
the inverse problem is concerned with the estimation of the
unknown optical parameters from boundary measurements [1].

Numerical approaches in solving the forward and inverse
problems in Diffuse Optical Tomography (DOT) poses a trade-
off between computational efficiency and imaging accuracy.
This tradeoff is a direct consequence of the discretization of
the forward and inverse problems [5], [1] and the size of the
resulting discrete forward and inverse problems. Attempting
to minimize the discretization error in the solutions of both
problems separately results in increased size of the discrete
forward and inverse problems. Thus, it is important to under-
stand the relationship between the discretization error and the
resulting error in the solution of the inverse problem.

In [5], we presented an error analysis that shows the effect
of discretization of the forward and inverse problems on the
accuracy of DOT imaging. In this work, based on the two
error bounds provided by the error analysis in [5], we present
an adaptive discretization scheme for the forward and inverse
problems, respectively. We remark that the mesh refinement
criterion for each problem comprises the discretization error
in the corresponding problem solution, scaled spatially by the
solutions of both problems. Thus, the proposed adaptive mesh
generation algorithms address the interdependence between

the solutions of the forward and inverse problems and take
into account the orientation of the source-detectors and the ab-
sorptive perturbations. This makes the adaptive discretization
algorithms presented in this paper different from the previous
approaches [4], [9], [3], [7], [8] (see [5], [6] for an extensive
literature survey). The simulation experiments validate the
implications of our error analysis and show that the proposed
mesh generation algorithms significantly improve the accuracy
of the reconstructed optical images for a given number of
unknowns in the discrete forward and inverse problems.

The outline of this paper is as follows: In Section 2,
we give a brief overview of the forward and inverse DOT
problems and recall the two theorems presented in [5] which
summarize the impact of discretization on the accuracy of the
reconstructed optical images. Finally we discuss the adaptive
mesh generation algorithms followed by our experimental
results and the conclusion section.

TABLE I
INDEX OF NOTATION.

Notation Explanation
‖f(x)‖0 The L2(Ω) (or H0(Ω)) norm of f(x)
‖f(x)‖p The Hp(Ω) norm of f(x)
‖f(x)‖Lp(Ω) The Lp(Ω) norm of f(x)
‖f(x)‖0,m The L2 (or H0) norm of f(x) over the mth

finite element Ωm

‖f(x)‖p,m The Hp norm of f(x) on the mth finite element Ωm

f(x) The complex conjugate of f(x)

II. OVERVIEW

In this section, we first briefly define the forward and inverse
problems in DOT. Next, we state Theorems 1 and 2 presented
in [5] to recall the effect of the discretization of the forward
and inverse problems on the accuracy of optical absorption
image reconstruction. We refer to Table I for the explanation
of the notation associated with functions and their norms.

A. Forward and inverse problems in DOT

We consider the following boundary value problem to model
the near infrared light propagation in a bounded domain Ω ⊂



R3, with Lipschitz boundary [2]:

−∇ ·D(x)∇gj(x) + (µa(x) +
iω

c
)gj(x) = Qj(x) x ∈ Ω, (1)

gj(x) + 2aD(x)
∂gj

∂n
(x) = 0 x ∈ ∂Ω, (2)

where gj(x) is the photon density, Qj(x) is the point source
located at the source position xj

s, D(x) is the diffusion coeffi-
cient, µa(x) is the absorption coefficient, ω is the modulation
frequency of the source, c is the speed of the light, a is a
parameter governing the internal reflection at the boundary
∂Ω, and ∂ · /∂n denotes the directional derivative along
the unit normal vector n on the boundary. The boundary
value problem (1)-(2) constitutes the forward problem in DOT
together with the associated adjoint problem [1], [5]:

−∇ ·D(x)∇g∗i (x) + (µa(x)− iω

c
)g∗i (x) = 0 x ∈ Ω, (3)

g∗i (x) + 2aD(x)
∂g∗i
∂n

(x) = Q∗i (x) x ∈ ∂Ω, (4)

where Q∗i (x) is the adjoint source located at the detector
position xi

d. Note that we approximate the point source Qj

in (1) and the adjoint source Q∗i in (4) by Gaussian functions
with sufficiently low variance, whose centers are located at xj

s

and xi
d, respectively [5].

In this work, we focus on the estimation of the absorp-
tion coefficient and consider an iterative algorithm based
on repetitive linearization of the inverse problem using first
order Born approximation. Using a zeroth order Tikhonov
regularization to address the illposedness, the inverse problem
at each iteration reads:

γ(x) = A∗aΓi,j = (A∗aAa + λI)αλ = Kαλ, (5)

=
∫

Ω

κ(x, x́)αλ(x́)dx́ + λαλ(x) (6)

where Γi,j is the differential measurement at the ith detector
due to the jth source as a result of the small perturbation α(x)
on the background absorption coefficient µa(x). In (6), κ(x, x́)
is the kernel of the integral equation, given by

κ(x, x́) =
Nd,Ns∑

i,j

H∗(x; xj
s, xi

d)H(xj
s, xi

d; x́), (7)

where H(xj
s, xi

d; x́) = −g∗(x́, xi
d)g(x́, xj

s) is the kernel of
the integral operator Aa : L∞(Ω) → CNd×Ns and
H∗(x; xj

s, xi
d) = −g∗(x, xi

d)g(x, xj
s) is the kernel of the adjoint

operator A∗a : CNd×Ns → L1(Ω) [6]. For the rest of the paper,
we will denote L∞(Ω) and L1(Ω) by X and Y , respectively.

Below we summarize the two theorems of [5] and provide
the error estimates which will be used in the design of adaptive
meshes for the discretization of the forward and inverse DOT
problems.

B. Effect of inverse problem discretization

Consider the discretization of the inverse problem (5) by
projecting it onto a finite dimensional subspace Yn, using the

collocation method [5]:

PnKαλ
n = Pnγ, (8)

where Pn : Y → Yn is the projection operator associated with
the collocation method with piecewise linear Lagrange basis
functions Lp(x) [5] such that αλ

n(x), x ∈ Ω, is approximated
on a set {Ωm} of finite elements for m = 1, · · · , N∆,⋃N∆

m Ωm = Ω as follows:

αλ
n(x) =

n∑
p=1

apLp(x). (9)

Let ψ be the interpolant of αλ [2] and assume that αλ ∈
H1(Ω). Then, the interpolation error eα = αλ−ψ is bounded
by

‖eα‖0,m ≤ C‖αλ‖1,mhm, (10)

where C is a positive constant and hm is the diameter of the
smallest ball that contains the mth element. Then,

Theorem 1:
The error between the solution αλ of (5) and the solution

αλ
n of (8) is bounded by ‖αλ − αλ

n‖L1(Ω):

≤ C
√

VΩ‖I − Tn‖Y→Xn

N∆∑
m=1

‖αλ‖1,mhm

+
C

λ
‖Tn‖Y→Xn max

i,j
‖g∗i gj‖L1(Ω)

×
N∆∑

m=1

Nd,Ns∑

i,j

‖g∗i gj‖0,m‖αλ‖1,mhm,

where C is a positive constant, VΩ is the volume of Ω, Tn :
Y → Xn is a uniformly bounded operator given by Tn = [I +
1
λPnA∗aAa]−1Pn, and gj , g

∗
i are the solutions of the variational

formulations of the boundary value problems (1)-(2) and (3)-
(4), respectively [5].

Proof: See [5].

C. Effect of forward problem discretization

Assume that D(x), µa(x) ∈ C2(Ω). Noting that Qj , Q
∗
i ∈

H1(Ω), the solutions gj , g
∗
i of the variational formulations of

the boundary value problems (1)-(2) and (3)-(4) satisfy [5]

gj(x), g∗i (x) ∈ C1(Ω). (11)

Let Gj(x) and G∗i (x) be the finite element approximations to
gj and g∗i , respectively, and let hj

m and hi
m be the diameter

of the smallest ball that contains the mth element in the finite
element solutions Gj and G∗i , respectively. Then, a bound for
the discretization error in the solutions Gj and G∗i can be
given by

‖gj −Gj‖0,m ≤ C‖gj‖1,mhj
m, (12)

‖g∗i −G∗i ‖0,m ≤ C‖g∗i ‖1,mhi
m, (13)

where C is a positive constant.
Consider the inverse problem

K̃α̃λ = γ̃, (14)



where K̃ and γ̃ are the finite dimensional approximations to
K and γ, obtained by substituting gj and g∗i in H(xj

s, xi
d; x́)

and H∗(x; xj
s, xi

d) by Gj and G∗i , respectively. Then,
Theorem 2:
A bound for the error between the solution αλ of (5) and

the solution α̃λ of (14) due to approximations K̃ and γ̃ is
given by:

‖αλ − α̃λ‖L1(Ω) ≤
C

λ
max

i,j
‖g∗i gj‖L1(Ω)

×



N∆∑
m=1

Nd,Ns∑

i,j

(
2‖gjα

λ‖0,m + ‖α‖∞‖gj‖0,m

) ‖g∗i ‖1,mhi
m

+
N∆∑

m=1

Nd,Ns∑

i,j

(
2‖g∗i αλ‖0,m + ‖α‖∞‖g∗i ‖0,m

) ‖gj‖1,mhj
m


 ,

where C is a positive constant.
Proof: See [5].
We refer to [5] for further details of the discussion regarding

the definition and discretization of the forward and inverse
problems.

III. ADAPTIVE MESH GENERATION

The adaptive mesh generation is based on minimizing the
error bounds in Theorems 1 and 2 and distributing the error
bound evenly on each of the finite elements. For the details
of the mesh generation, we refer to [6].

IV. NUMERICAL EXPERIMENTS

In the following, we present the results of our numerical
experiments. Note that in all experiments, we use triangular
finite elements with piecewise linear Lagrange basis functions.
We apply Gaussian elimination method to solve the discrete
forward problem resulting from the variational formulation [2]
of the boundary value problems (1)-(2) and (3)-(4) [5]. For the
inverse problem, we consider the discrete problem obtained by
projecting (14) by collocation method:

PnK̃α̃λ
n = Pnγ̃, (15)

where the regularization parameter is set to λ = 10−7, which
is chosen based on experience.

A. Simulation Study

In this simulation study, we consider the geometry shown
in Figure 1(a). We simulate the optical data by solving the
diffusion equation at ω = 0 on a fine uniform grid with 61
nodes along x and y directions, where the refractive index
mismatch parameter a = 3. 11 sources and 11 detectors
are evenly spaced on the bottom and top edges of the
square, respectively. The diffusion coefficient D(x) = 0.0410
is assumed to be constant. The circular heterogeneity with
absorption coefficient µa = 0.2 cm−1 is embedded in an
optically homogeneous background with µa = 0.04 cm−1.

In order to obtain a series of absorption imaging problems
using the same setup, we consider 5 values for the background

(a) The optical domain and
source-detector configuration for
the simulation study.

0 1 2 3 4 5 6
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Reference
Adaptive−Adaptive
Uniform−Uniform

(b) The solid, square, and dia-
mond lines correspond to the cross-
sectional cuts taken from the im-
ages shown in Figures 3(a), 3(d),
and 3(b), respectively.

Fig. 1. (a) The setup used for the simulation study. The squares and triangles
denote the detectors and sources, respectively. (b) The cross-sectional cuts
taken from Figures 3(a), 3(b), and 3(d), along x direction at y = 3.

absorption value. Then, for each imaging problem, we consider
three mesh scenarios: Uniform mesh for both forward and
inverse problems; adaptive mesh for the forward problem and
uniform mesh for the inverse problem; and adaptive meshes
for both forward and inverse problems. We refer to Table II
for a brief outline of the first simulation study.

TABLE II
THE MESH SCENARIOS AND THE BACKGROUND µa VALUES IN THE

SIMULATION STUDY.

Mesh (Forward) Mesh (Inverse) Background µa (cm−1)
Uniform Uniform 0.032, 0.036, 0.040, 0.044, 0.050
Adaptive Uniform 0.032, 0.036, 0.040, 0.044, 0.050
Adaptive Adaptive 0.032, 0.036, 0.040, 0.044, 0.050

The uniform mesh used for the forward problem discretiza-
tion has 625 nodes and is shown in Figure 2(a). The uniform
mesh for the inverse problem has 313 nodes and is shown
in Figure 2(b). We use the algorithms described in Section
3.1 and Remark 1(iii), and Section 3.3 Remark 2(iii) in [6]
to generate the adaptive meshes for the forward and inverse
problems, respectively. The number of nodes in each of the
adaptive meshes used for the forward problem does not exceed
750. An example for the adaptive mesh generated for a source
located at (1.0, 0) is shown in Figure 2(c). The adaptive mesh
for the inverse problem generated for the case where the
background µa = 0.050 cm−1 has 418 nodes and is shown in
Figure 2(d).

We consider the image reconstructed by using fine uniform
meshes (61× 61 nodes for the forward problem and 61× 61
nodes for the inverse problem) as the reference image, which is
assumed to possess no error due to discretization. We compute
the error ‖αλ − α̃λ

n‖L1(Ω) for each image reconstruction and
tabulate the results in Table III. We see that the error in
the images reconstructed by using uniform meshes for both
forward and inverse problems is significantly reduced by
the use of adaptively refined meshes. A similar behavior is
observed for all choices of background absorption value.

We present image reconstructions in Figures 3 for the
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(a) The uniform mesh with 625
nodes.
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(b) The uniform mesh with 313
nodes.
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(c) The adaptive mesh generated for
the forward problem for the source
located at (1.0,0): Background µa =
0.050 cm−1.
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(d) The adaptive mesh generated for
the inverse problem solution, with
418 nodes. Background µa = 0.050
cm−1.

Fig. 2. Examples of meshes used in the first simulation study.

TABLE III
THE ERROR ‖αλ − α̃λ

n‖L1(Ω) FOR EACH EXPERIMENT DESCRIBED IN THE

SIMULATION STUDY AND TABLE II. THE FIRST COLUMN SHOWS THE TYPE

OF THE MESHES (“U” FOR UNIFORM, “A” FOR ADAPTIVE) USED IN THE

FORWARD AND INVERSE PROBLEMS, RESPECTIVELY.

Background µa: 0.032 0.036 0.040 0.044 0.050
U-U ‖αλ − α̃λ

n‖L1(Ω) : 0.233 0.256 0.277 0.293 0.301
A-U ‖αλ − α̃λ

n‖L1(Ω) : 0.124 0.114 0.117 0.121 0.128
A-A ‖αλ − α̃λ

n‖L1(Ω) : 0.104 0.099 0.099 0.100 0.101

case, in which the background absorption value is equal to
0.050 cm−1. Figure 3(a) displays the reference image used
to compute the corresponding error values given in Table III.
Figures 3(c) and 3(d) show that the optical heterogeneity is
resolved better by using adaptive meshes as compared to the
reconstructed image obtained by using uniform meshes, which
is shown in Figure 3(b). These results are consistent with the
error values given in Table III. Note that the number of nodes
in the adaptive meshes is almost equal to the number of nodes
that the uniform meshes have. In Figure 1(b), we show the
cross-sectional views from the reconstructed images.

V. CONCLUSION

In this work, based on the error analysis presented in [5],
we presented a verification of Theorems 1 and 2 and showed
that the proposed mesh generation algorithms significantly
improve the accuracy of the reconstructed optical images for a
given number of unknowns in the discrete forward and inverse
problems. Conventional error estimates do not include domain
specific factors. As a result, the adaptive mesh generation
algorithms based on conventional error estimates (12)-(13)
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(a) The optical absorption image
used as the reference for error com-
putations.
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(b) The reconstructed absorption im-
age using the uniform mesh in Fig-
ure 2(a) for the forward, and the
uniform mesh in Figure 2(b) for the
inverse problem.
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(c) The reconstructed absorption im-
age using an adaptive mesh for the
forward, and the uniform mesh in
Figure 2(b) for the inverse problem.
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(d) The reconstructed absorption im-
age using an adaptive mesh for the
forward, and the adaptive mesh in
Figure 2(d) for the inverse problem.

Fig. 3. The results of the simulation study, with the background µa = 0.050
cm−1.

and (10) may lead to high errors in reconstructed optical
images (see [6]).

We finally note that the adaptive mesh generation algo-
rithms presented in this paper can be adapted for the forward
and inverse problems of similar inverse parameter estimation
problems, such as electrical impedance tomography, optical
fluorescence tomography, bioluminescence tomography, mi-
crowave imaging etc.
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